
1

Introduction to SQL
Programming Techniques
CSC 375, Fall 2019

The Six Phases of a Project:
Enthusiasm
Disillusionment
Panic
Search for the Guilty
Punishment of the Innocent
Praise for non-participants

2

Part I: PHP and MySQL

3

Architectures for Database Access

v Client-Server Architectures
§ Client tasks:

• Provide a way for users to submit queries
• Run applications that use the results of queries
• Display results of queries

§ Server tasks:
• Implement a data manipulation language that can directly access and

update the database
v A two-tier system has clients that are connected directly

to the server
v Problems with a two-tier system:

§ Because the relative power of clients has grown considerably,
we could shift processing to the client, but then keeping all
clients current with application updates is difficult1

4

Architectures for Database Access

v A solution to the problems of two-tier systems is
to add a component in the middle
§ Create a three-tier system

v For Web-based database access, the middle tier
can run applications (client just gets results)

DB Client Middle Tier Server
Browser Web Server & Apps Database

System

5

Architectures for Database Access

v Microsoft Access Architecture
§ A tool to access any common database structure
§ Use either the Jet database engine, or go through the

Open Database Connectivity (ODBC) standard
§ ODBC is an API for a set of objects and methods that

are an interface to different databases
v Database vendors provide ODBC drivers for

their products
§ The drivers implement the ODBC objects and

methods
§ An application can include SQL statements that work

for any database for which a driver is available

6

Architectures for Database Access

v PHP & Database Access
§ An API for each specific database system
§ Also convenient for Web access to databases, because PHP

is run on the Web server
v The Java JDBC Architecture

§ Related to both embedded languages and to ODBC
§ JDBC is a standard protocol that can be implemented as a

driver for any database system
§ JDBC allows SQL to be embedded in Java applications,

applets, and servlets
§ JDBC has the advantage of portability over embedded SQL
§ A JDBC application will work with any database system for

which there is a JDBC driver

7

Database Access with PHP/MySQL

v mysqli or pdo?
§ PDO works with different database systems
§ MySQLi works with MySQL databases

v MySQLi provides both object-oriented and
procedural interfaces.

8

Database Access with PHP/MySQL

v To connect PHP to a database, use mysqli_connect,
which can have three parameters:
§ host (default is localhost)
§ Username (default is the username of the PHP script)
§ Password (default is blank, which works if the database

does not require a password)
§ $db = mysqli_connect() is usually checked for failure

if ($conn->connect_error) {
die("Connection failed: " . $conn->connect_error);

v Sever the connection to the database with
mysqli_close

9

Putting Content into Your Database with
PHP

v Connect to the database server and login
§ mysqli_connect("host","username","password");

v Choose the database
§ mysqli_select_db("database");

v Choose the database
§ mysqli_select_db("database");

v Close the connection to the database server
§ mysqli_close();

10

Database Access with PHP/MySQL

v To focus MySQL,
mysqli_select_db(”Guests");

v Requesting MySQL Operations
§ Call mysqli_query with a string parameter, which is an

SQL command

$query = "SELECT * from MyGuests";
$result = mysqli_query($conn, $query);

}

11

Database Access with PHP/MySQL

v Dealing with the result:
§ Get the number of rows in the result

$num_rows = mysqli_num_rows($result);

§ Get the rows with mysqli_fetch_array

for ($row_num = 0; $row_num < $num_rows; $row_num++) {
$row = mysqli_fetch_assoc($result);
print "<p> Result row number" .

($row_num + 1) .
" State_id: ";

print htmlspecialchars($row["State_id"]);
print "State: ";
etc.

return an
associative array
(with the column
names as keys
and the values as
the row values

12

Part II: Python MySQL

https://www.w3schools.com/python/python_mysql_getstarted.asp

13

Python MySQL

v Install MySQL Driver
Use pip or pip3: pip3 install mysql-connector

v Test MySQL Connector
import mysql.connector

v Establish a Connection
mydb = mysql.connector.connect(

host="localhost",
user="yourusername",
passwd="yourpassword"

)
print(mydb)
mycursor = mydb.cursor()

14

Database Manipulation

v Create a Database
mycursor.execute("CREATE DATABASE mydatabase")

v Check if database exists
mycursor.execute("SHOW DATABASES")

v Create a Table
mycursor.execute("CREATE TABLE customers (name
VARCHAR(255), address VARCHAR(255))")
mycursor.execute("CREATE TABLE customers (id
INT AUTO_INCREMENT PRIMARY KEY, name
VARCHAR(255), address VARCHAR(255))")

v Alter Table
mycursor.execute("ALTER TABLE customers ADD
COLUMN id INT AUTO_INCREMENT PRIMARY KEY")

15

Database Manipulation

v Select
mycursor.execute("SELECT * FROM customers")
myresult = mycursor.fetchall()

v Where
sql = "SELECT * FROM customers WHERE address ='Park Lane 38'"
mycursor.execute(sql)
myresult = mycursor.fetchall()

v Insert
sql = "INSERT INTO customers (name, address) VALUES (%s, %s)"
val = ("John", "Highway 21")
mycursor.execute(sql, val)
mydb.commit()
print(mycursor.rowcount, "record inserted.")

16

Database Manipulation

v Join
sql = "SELECT \

users.name AS user, \
products.name AS favorite \
FROM users \
INNER JOIN products ON users.fav = products.id"

mycursor.execute(sql)

myresult = mycursor.fetchall()

for x in myresult:
print(x)

17

Part III: Stored Procedures

18

Stored Procedures in MySQL

v A stored procedure contains a sequence of SQL commands stored in the
database catalog so that it can be invoked later by a program

v Stored procedures are declared using the following syntax:
Create Procedure <proc-name>

(param_spec1, param_spec2, …, param_specn)
begin

-- execution code
end;

where each param_spec is of the form:
[in | out | inout] <param_name> <param_type>

§ in mode: allows you to pass values into the procedure,
§ out mode: allows you to pass value back from procedure to the calling program

19

Example

v Suppose we want to keep track of the total salaries of employees
working for each department

We need to write a procedure
to update the salaries in
the deptsal table

20

Example

Step 1:

Change the delimiter (i.e., terminating character) of
SQL statement from semicolon (;) to something else
(e.g., //) So that you can distinguish between the
semicolon of the SQL statements in the procedure and
the terminating character of the procedure definition

21

Example

Step 2:
1. Define a procedure called updateSalary which takes as

input a department number.
2. The body of the procedure is an SQL command to update

the totalsalary column of the deptsal table.
3. Terminate the procedure definition using the delimiter

you had defined in step 1 (//)

22

Example

Step 3: Change the delimiter back to semicolon (;)

23

Example

Step 4: Call the procedure to update the totalsalary for each
department

24

Example

Step 5: Show the updated total salary in the deptsal table

25

Stored Procedures in MySQL

v Use show procedure status to display the list
of stored procedures you have created

v Use drop procedure to remove a stored
procedure

26

Stored Procedures in MySQL

v You can declare variables in stored procedures

v You can use flow control statements (conditional IF-
THEN-ELSE or loops such as WHILE and REPEAT)

v MySQL also supports cursors in stored procedures.
§ A cursor is used to iterate through a set of rows returned by

a query so that we can process each individual row.

v To learn more about stored procedures, go to:
http://www.mysqltutorial.org/mysql-stored-procedure-

tutorial.aspx

27

Part IV: JDBC and SQLJ

28

SQL in Application Code

v SQL commands can be called from within a host
language (e.g., C++ or Java) program.
§ SQL statements can refer to host variables (including

special variables used to return status).

§ Must include a statement to connect to the right
database.

v Two main integration approaches:
§ Embed SQL in the host language (Embedded SQL, SQLJ)

§ Create special API to call SQL commands (JDBC)

29

Database API Approaches

v JDBC is a collection of Java classes and interface that
enables database access

v JDBC contains methods for

§ connecting to a remote data source,

§ executing SQL statements,

§ receiving SQL results

§ transaction management, and

§ exception handling

v The classes and interfaces are part of the java.sql package

ODBC = Open DataBase Connectivity
JDBC = Java DataBase Connectivity

Java
Application

JDBC API

JDBC
Driver

DBMS

java.sql

30

Advantage of API Approach

This is achieved by introducing an
extra level of indirection

§ A DBMS-specific “driver” traps
the calls and translates them into
DBMS-specific code

Java
Application

JDBC API

JDBC
Driver 2

Oracle

Standard
interface

JDBC
call

Database
specific

hidden in
lower level

java.sql

Applications using ODBC or JDBC are
DBMS-independent at the source code
level and at the level of the executable

31

Driver Manager

Drivers are registered with a
driver manager

§ Drivers are loaded
dynamically on demand

§ The application can access
several different DBMS’s
simultaneously

Java
Application

JDBC API

JDBC Driver
Manager

JDBC
Driver 2

JDBC
Driver 1

SQL
Server

Oracle

32

JDBC: Architecture

Four architectural components:

§ Application (initiates and
terminates connections, submits
SQL statements)

§ Driver manager (loads JDBC
driver and passes function calls)

§ Driver (connects to data source,
transmits requests and
returns/translates results and
error codes)

§ Data source (processes SQL
statements)

Java
Application

JDBC API

JDBC Driver
Manager

JDBC
Driver 2

JDBC
Driver 1

SQL
Server

Oracle

37

JDBC Classes and Interfaces

Steps to submit a database
query:

1. Load the JDBC driver

2. Connect to the data source

3. Execute SQL statements

Java
Application

JDBC API

JDBC Driver
Manager

JDBC
Driver 2

JDBC
Driver 1

SQL
Server

Oracle

38

JDBC Driver Management

v Two ways of loading a JDBC driver:

1. In the Java code:
Class.forName(“oracle/jdbc.driver.Oracledriver”);
/* This method loads an instance of the driver class

2. Enter at command line when starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver

v DriverManager class:

§ Maintains a list of currently
loaded drivers

§ Has methods to enable dynamic
addition and deletion of drivers

Java
Application

JDBC API

JDBC Driver
Manager

JDBC
Driver 2

JDBC
Driver 1

DBMS1 DBMS2

39

JDBC Steps

1) Importing Packages
2) Registering the JDBC Drivers
3) Opening a Connection to a Database
4) Creating a Statement Object
5) Executing a Query and Returning a Result Set
6) Object
7) Processing the Result Set
8) Closing the Result Set and Statement Objects
9) Closing the Connection

40

Executing SQL Statements

v Three different ways of executing SQL statements:
1. Statement (both static and dynamic SQL statements)

2. PreparedStatement (semi-static SQL statements)

3. CallableStatment (stored procedures)

v PreparedStatement class:

Used to create precompiled, parameterized SQL statements
§ SQL structure is fixed

§ Values of parameters are determined at run-time

v Example
§ https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

41

1: Importing Packages

//Import packages
import java.sql.*; //JDBC packages
import java.math.*;
import java.io.*;
import oracle.jdbc.driver.*;

42

2. Registering JDBC Drivers

class MyExample {
public static void main (String args []) throws
SQLException
{

// Load Oracle driver

Class.forName("oracle.jdbc.driver.OracleDriver")

// Or:
//DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

43

3. Connections in JDBC
v We interact with a data source through sessions.

v A session is started through creation of a Connection object

v Each connection identifies a logical session with a data source

v Connections are specified through a URL that uses the jdbc
protocol: jdbc:<subprotocol>:<otherParameters>

Example:
String url=“jdbc:oracle:www.bookstore.com:3083”;

Connection con;

try{

con = DriverManager.getConnection(url,userId,password);

} catch(SQLException excpt) { …}

Different drivers
have slightly
different URL
formats – check the
documentation

Host Port

Discuss
later

44

3. Opening Connection to a Database

//Prompt user for username and password

String user;
String password;
user = readEntry("username: ");
password = readEntry("password: ");

// Connect to the database

Connection conn = DriverManager.getConnection
(“jdbc:oracle:thin:@apollo.ite.gmu.edu: 1521:ite10g”, user, password);

45

4. Creating a Statement Object
// Suppose Books has attributes isbn, title, author,
// quantity, price, year. Initial quantity is always
// zero; ?’s are placeholders

String sql = “INSERT INTO Books VALUES(?,?,?,0,?,?)”;
PreparedStatement pstmt = conn.prepareStatement(sql);

// now instantiate the parameters with values.
// Assume that isbn, title, etc. are Java variables
// that contain the values to be inserted.

pstmt.clearParameters();
pstmt.setString(1, isbn);
pstmt.setString(2, title);
pstmt.setString(3, author);
pstmt.setFloat(5, price);
pstmt.setInt(6, year);

46

5. Executing a Query, Returning Result Set
6. Processing the Result Set

// The executeUpdate command is used if the SQL stmt does not return any
// records (e.g. UPDATE, INSERT, ALTER, and DELETE stmts).
// Returns an integer indicating the number of rows the SQL stmt modified.

int numRows = pstmt.executeUpdate();

// If the SQL statement returns data, such as in a SELECT query, we use
executeQuery method

String sqlQuery = “SELECT title, price FROM Books
WHERE author=?”;
PreparedStatement pstmt2 = conn.prepareStatement
(sqlQuery);
pstmt2.setString(1, author);
ResultSet rset = pstmt2.executeQuery ();

// Print query results the (1) in getString refers to the title value, and
the (2) refers to the price value

while (rset.next ())
System.out.println (rset.getString (1)+ " ” +
rset.getFloat(2));

47

7. Closing the Result Set and Statement Objects
8. Closing the Connection

// close the result set, statement,
// and the connection

rset.close();
pstmt.close();
pstmt2.close();
conn.close();
}

48

Connection Class Interface (1)
v void setTransactionIsolation(int level)

Sets isolation level for the current connection
v public int getTransactionIsolation()

Get isolation level of the current connection
v void setReadOnly(boolean b)

Specifies whether transactions are read-only
v public boolean getReadOnly()

Tests if transaction mode is read-only
v void setAutoCommit(boolean b)

§ If autocommit is set, then each SQL statement is
considered its own transaction.

§ Otherwise, a transaction is committed using commit(), or
aborted using rollback().

v public boolean getAutoCommit()
Test if autocommit is set

49

Connection Class Interface (2)

v public boolean isClosed()
Checks whether connection is still open.

v connectionname.close()
Close the connection connectionname

50

PreparedStatement

String sql=“INSERT INTO Sailors VALUES(?,?,?,?)”;

PreparedStatment pstmt=con.prepareStatement(sql);

pstmt.clearParameters();

pstmt.setInt(1,sid);

pstmt.setString(2,sname);

pstmt.setInt(3, rating);

pstmt.setFloat(4,age);

int numRows = pstmt.executeUpdate();

Place
holder

Connection name

Setting parameter values
sid, sname, rating, age are java

variables

Good style to always clear

Use executeUpdate() when
no rows are returned

Number of
rows modified

51

ResultSet Example

v PreparedStatement.executeUpdate only returns the
number of affected records

v PreparedStatement.executeQuery returns data,
encapsulated in a ResultSet object
§ ResultSet is similar to a cursor

§ Allows us to read one row at a time

§ Intially, the ResultSet is positioned before the first row

§ Use next() to read the next row

§ next() returns false if there are no more rows

52

Common ResultSet Methods (1)

POSITIONING THE CURSOR

next() Move to next row

previous() Moves back one row

absolute(int num)
Moves to the row with the
specified number

relative(int num)
Moves forward or backward (if
negative)

first() Moves to the first row

Last() Moves to the last row

53

Common ResultSet Methods (2)

RETRIEVE VALUES FROM COLUMNS

getString(string
columnName):

Retrieves the value of designated
column in current row

getString(int
columnIndex)

Retrieves the value of designated
column in current row

getFloat (string
columnName)

Retrieves the value of designated
column in current row

54

Matching Java and SQL Data Types

SQL Type Java class ResultSet get method

BIT Boolean getBoolean()

CHAR String getString()

VARCHAR String getString()

DOUBLE Double getDouble()

FLOAT Double getDouble()

INTEGER Integer getInt()

REAL Double getFloat()

DATE java.sql.Date getDate()

TIME java.sql.Time getTime()

TIMESTAMP java.sql.TimeStamp getTimestamp()

55

SQL Data Types
BIT A boolean value

CHAR(n) A character string of fixed length n

VARCHAR(n)
A variable-length character string with a
maximum length n

DOUBLE A double-precision floating point value

FLOAT(p) A floating point value with a precision value p

INTEGER A 32-bit signed integer value

REAL A high precision numeric value

DATE A day/month/year value

TIME A time of day (hour, minutes, second) value

TIMESTAMP A day/month/year/hour/minute/second value

56

SQLJ

v Embedded SQL for Java
v SQLJ is similar to existing extensions for SQL

that are provided for C, FORTRAN, and other
programming languages.

v IBM, Oracle, and several other companies
have proposed SQLJ as a standard and as a
simpler and easier-to-use alternative to
JDBC.

57

SQLJ

v SQL can span multiple lines
v Java host expressions in SQL statement

#sql { … } ;

58

SQLJ Example
String title; Float price; String author(“Lee”);

// declare iterator class

#sql iterator Books(String title, Float price);
Books books;

// initialize the iterator object books; sets the
// author, execute query and open the cursor

#sql books =
{SELECT title, price INTO :title, :price
FROM Books WHERE author=:author };
// retrieve results
while(books.next()){
System.out.println(books.title()+”,”+books.price());
books.close();

59

JDBC Equivalent

String sqlQuery = “SELECT title, price FROM Books
WHERE author=?”;
PreparedStatement pstmt2 = conn.prepareStatement(sqlQuery);
pstmt2.setString(1, author);
ResultSet rset = pstmt2.executeQuery ();

// Print query results. The (1) in getString refers
// to the title value, and the (2) refers to the
// price value

while (rset.next ())
System.out.println (rset.getString (1)+ " ” +
rset.getFloat(2));

60

SQLJ Advantage

v Can check for program’s errors at translation-
time rather than at run-time

v Can write an application that is deployable to
other databases
§ SQLJ allows users to customize the static SQL for

that database at deployment-time.
v Can work with a database that contains

compiled SQL
§ Cannot compile SQL statements in a JDBC

program.

61

JDBC Tutorials

v Check
§ http://java.sun.com/docs/books/tutorial/jdbc/basi

cs/
§ http://infolab.stanford.edu/~ullman/fcdb/oracle/o

r-jdbc.html

