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Science is the knowledge of 
consequences, and dependence of one 
fact upon another.

Thomas Hobbes 
(1588-1679)

Review: Database Design

• Requirements Analysis 
§ user needs; what must database do?

• Conceptual Design 
§ high level descr (often done w/ER model)

• Logical Design 
§ translate ER into DBMS data model

• Schema Refinement 
§ consistency, normalization

• Physical Design - indexes, disk layout
• Security Design - who accesses what 2



Related Readings…

• Check the following two papers on the course webpage

§ Decomposition of A Relation Scheme into Boyce-Codd
Normal Form, D-M. Tsou

§ A Simple Guide to Five Normal Forms in Relational 
Database Theory, W. Kent
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Informal Design Guidelines for 
Relation Schemas
§ Measures of quality

§ Making sure attribute semantics are clear
§ Reducing redundant information in tuples
§ Reducing NULL values in tuples
§ Disallowing possibility of generating spurious 

tuples
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What is the Problem?

• Consider relation obtained (call it SNLRHW)

• What if we know that rating determines hrly_wage?
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Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked)

S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 

What is the Problem?

• Update anomaly

§ Can we change W in just the 1st tuple of SNLRWH?
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S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 



What is the Problem?

• Insertion anomaly:

§ What if we want to insert an employee and don’t know 
the hourly wage for his rating?
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S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 

What is the Problem?

• Deletion anomaly

§ If we delete all employees with rating 5, we lose the 
information about the wage for rating 5!
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S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 



What do we do?

• When part of data can be derived from other parts, we 
say redundancy exists

§ Example: the hrly_wage of Smiley can be derived 
from the hrly_wage of Attishoo because they have 
the same rating and we know rating determines 
hrly_wage.

• Redundancy exists because of of the existence of 

integrity constraints (e.g., FD: R→W).
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What do we do?

• Redundancy is at the root of several problems associated 
with relational schemas:
§ redundant storage, insert/delete/update anomalies

• Integrity constraints, in particular functional 
dependencies, can be used to identify schemas with such 
problems and to suggest refinements.

• Main refinement technique:  decomposition (replacing 
ABCD with, say, AB and BCD, or ACD and ABD).

• Decomposition should be used judiciously:
§ Is there reason to decompose a relation?

§ What problems (if any) does the decomposition cause?
10



Decomposing a Relation

• Redundancy can be removed by “chopping” the relation into 
pieces.

• FD’s (more about this one later) are used to drive this process.

R ® W is causing the problems, so decompose SNLRWH into what 
relations?
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Hourly_Emps2

Wages

S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 

 

R W 
8 10 
5 7 

 

Refining an ER Diagram

• 1st diagram translated:

§ Lots associated with employees
• Suppose all employees in a dept are assigned the same 

lot: D → L

• Can fine-tune this way:
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Employees(S,N,L,D,S2)
Departments(D,M,B)

Employees2(S,N,D,S2)
Departments(D,M,B,L)



Normalization

• Normalization is the process of organizing the data 
into tables in such a way as to remove anomalies. 

§ Based on the observation that relations with certain 
properties are more effective in inserting, updating 
and deleting data than other sets of relations 
containing the same data

§ A multi-step process beginning with an 
“unnormalized” relation
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Normal Forms

• First Normal Form (1NF)

• Second Normal Form (2NF)

• Third Normal Form (3NF)

• Boyce-Codd Normal Form (BCNF)

• Fourth Normal Form (4NF)

• Fifth Normal Form (5NF)

14



Recall

• A key is a set of attributes that uniquely identifies 
each tuple in a relation.

• A candidate key is a key that is minimal.

§ If AB is a candidate key, then neither A nor B is a 
key on its own.

• A superkey is a key that is not necessarily minimal 
(although it could be)

§ If AB is a candidate key then ABC, ABD, and even 
AB are superkeys.
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Functional Dependencies (FDs)

§ Formal tool for analysis of relational schemas 

§ Enables us to detect and describe some of the above-

mentioned problems in precise terms

16



Functional Dependencies (FDs)

• A functional dependency (FD) has the form: X→Y, 
where X and Y are two sets of attributes

§ Examples: rating → hrly_wage, AB →C
• The FD X→Y is satisfied by a relation instance r if:

§ for each pair of tuples t1 and t2 in r:
• t1.X = t2.X implies t1.Y = t2.Y

§ i.e., given any two tuples in r, if the X values agree, 
then the Y values must also agree. (X and Y are sets of 
attributes)

• Convention: X, Y, Z etc denote sets of attributes, and 
A, B, C, etc denote attributes.
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In other Words…

• A functional dependency X ® Y holds over relation schema R 
if, for every allowable instance r of R:

t1 Î r, t2 Î r, ÕX(t1) = ÕX(t2) implies ÕY(t1) = ÕY(t2)

• Example:    SSN → StudentNum

Given two 
tuples in r if the X

values agree
then the Y values 
must also agree

Y and Y are sets of attributes

18



FD’s Continued

• The FD holds over relation name R if, for every 
allowable instance r of R, r satisfies the FD.

• An FD, as an integrity constraint, is a statement about 
all allowable relation instances

§ Given some instance r1 of R, we can check if it violates 
some FD f or not

§ But we cannot tell if f holds over R by looking at an 
instance!

• Cannot prove non-existence (of violation) out of ignorance

§ This is the same for all integrity constraints!
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FD’s Continued

• Functional dependencies are semantic properties of 
the underlying domain and data model

• FDs are NOT a property of a particular instance of the 
relation schema R!

§ The designer is responsible for identifying FDs
§ FDs are manually defined integrity constraints on R
§ All extensions respecting R’s functional dependencies 

are called legal extensions of R

20



Example:  Constraints on Entity Set

• Consider relation obtained from Hourly_Emps:
§ Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

• Notation:  We will denote this relation schema by listing the 
attributes:   SNLRWH
§ This is really the set of attributes {S,N,L,R,W,H}.

§ Sometimes, we will refer to all attributes of a relation by using 
the relation name  (e.g., Hourly_Emps for SNLRWH)

• Some FDs on Hourly_Emps:
§ ssn is the key:    S → SNLRWH 

§ rating determines hrly_wages:    R →W

§ lot determines lot:    L ® L  (“trivial” dependency)

S              N               L             R                           W                                 H
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Detecting Reduncancy

Hourly_Emps

Q: Why is R ® W problematic, but S®W not?

S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 

22



One More Example

23

A B C
1 1 2
1 1 3
2 1 3
2 1 2

FDs with A as the 
left side

Satisfied by the 
relation instance?

A → A
A → B
A → C
A → AB
A → AC
A → BC
A → ABC

Yes

Yes

No

Yes

No

No

No

How many possible FDs on this relation 
instance?

Violation of FD by a relation

• The FDX→Y is NOT satisfied by a relation instance r if:

§ There exists a pair of tuples t1 and t2 in r such that: 
t1.X = t2.X but t1.Y ≠ t2.Y

§ i.e., we can find two tuples in r, such that X agree, but 
Y values don’t.
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Some Other FDs
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A B C
1 1 2
1 1 3
2 1 3
2 1 2

FDs with A as the 
left side

Satisfied by the 
relation instance?

C → B
C → AB
B → C
B → B
AC → B
…

Yes

No

No

Yes

Yes

…

Relationship between FDs and Keys

• How are FD’s related to keys?

§ if “K ® all attributes of R” then K is a superkey for R
• Does not require K to be minimal.

• Given R(A, B, C)

§ A→ABC means that A is a key

26



What do we need to proceed?

• A compact representation for sets of FD constraints

• No redundant FDs

• An algorithm to compute the set of all implied FDs

• Given some FDs, we can usually infer additional FDs:

§ ssn→ did, did → lot ⇒ ssn→ lot
§ A→BC ⇒ A→B

27

Reasoning About FDs

• An FD f is implied by a set of FDs F if 
§ f holds whenever all FDs in F hold.

• How can we find all implied FDs?
§ Closure of F, F+

• How can we find a minimal set of FDs that implies others?
§ Minimal Cover

• F+ = closure of  F is the set of all FDs that are implied by F.   
(includes “trivial dependencies”)

• Fortunately, the closure of F can easily be computed 
using a small set of inference rules 28



Rules of Inference

• Armstrong’s Axioms (X, Y, Z are sets of attributes):

§ Reflexivity:  If  X  Ê Y,  then   X ® Y 
§ Augmentation:  If  X ® Y,  then   XZ ® YZ   for any Z
§ Transitivity:  If  X ® Y  and  Y ® Z,  then   X ® Z

• These are sound and complete inference rules for FDs!

§ i.e., using AA you can compute all the FDs in F+ and only 
these FDs.

• Completeness: Every implied FD can be derived
• Soundness: No non-implied FD can be derived

• Some additional rules (that follow from AA):

§ Union:   If X ® Y  and  X ® Z,   then  X ® YZ
§ Decomposition:   If X ® YZ,   then  X ® Y  and  X ® Z
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Reasoning About FDs - Example 

Example:  Contracts(cid,sid,jid,did,pid,qty,value), and:
§ C is the key:   C → CSJDPQV     (C is a candidate key)

§ Project purchases each part using single contract: JP → C

§ Dept purchases at most one part from a supplier: SD → P

• JP → C,  C → CSJDPQV   imply   JP → CSJDPQV
• SD → P   implies   SDJ → JP
• SDJ → JP,   JP → CSJDPQV  imply  SDJ → CSJDPQV

These are also candidate keys

Contract ID

Supplier ID
Project ID Department ID

Part ID

Quantity
Value

30



Reasoning About FDs - Example 

Example:  Contracts(cid,sid,jid,did,pid,qty,value), and:
§ C is the key:   C → CSJDPQV     (C is a candidate key)

§ Project purchases each part using single contract: JP → C

§ Dept purchases at most one part from a supplier: SD → P

• Since SDJ → CSJDPQV can we now infer that SD → CSDPQV 
(i.e., drop J on both sides)?

Contract ID

Supplier ID
Project ID Department ID

Part ID

Quantity
Value

No! FD inference is not like arithmetic multiplication.
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Computing F+

• Recall that F+ = closure of  F is the set of all FDs that are implied 
by F.   (includes “trivial dependencies”)

• In principle, we can compute the closure F+ of a given set F 
of FDs by means of the following algorithm:

§ Repeatedly apply the six inference rules until they stop 
producing new FDs.

• In practice, this algorithm is hardly very efficient

§ However, there usually is little need to compute the closure 
per se

§ Instead, it often suffices to compute a certain subset of the 
closure: namely, that subset consisting of all FDs with a 
certain left side

32



Example on Computing F+

• F = {A → B, B → C, C D → E }

• Step 1: For each f in F, apply reflexivity rule

§ We get: CD → C; CD → D
§ Add them to F:

• F = {A → B, B → C, C D → E; CD → C; CD → D }

• Step 2: For each f in F, apply augmentation rule

§ From A → B we get: A → AB; AB → B; AC → BC; AD 
→ BD; ABC →BC; ABD → BD; ACD →BCD

§ From B → C we get: AB → AC; BC → C; BD → CD; 
ABC → AC; ABD → ACD, etc etc.

§ Step 3: Apply transitivity on pairs of f’s
§ Keep repeating… You get the idea
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Attribute Closure

• Size of F+ is exponential in # attributes in R; can be 
expensive.

• If we just want to check if a given FD X ®Y is in F+, then:
• Compute the attribute closure of X (denoted X+) wrt F 

• X+ =  Set of all attributes A such that X ® A is in F+

• initialize  X+ := X
• Repeat until no change:

if U ® V in F such that U is in X+, then add V to X+

• Check if Y is in X+

• Can also be used to find the keys of a relation.
• If all attributes of R are in the closure of X then X is 

a superkey for R.
• Q: How to check if X is a “candidate key”?

34



Attribute Closure

• The following algorithm computes (X, F)+: 

35

Input F (a set of FDs), and X (a set of attributes)
• Output: Result = X+(under F)
• Method:

• Step 1: Result := X;
• Step 2: Take Y → Z in F, and Y is in Result, do:

• Result := Result ∪ Z
• Repeat step 2 until Result cannot be changed and then 

output Result

Attribute Closure (example)
• R = {A, B, C, D, E}
• F = { B ®CD, D ® E, B ® A, E ® C, AD ®B }
• Is B ® E in F+  ?

B+ = B
B+ = BCD
B+ = BCDA
B+ = BCDAE   … Yes!                                                              

and B is a key for R too!
• Is D a key for R?

D+ = D
D+ = DE
D+ = DEC    

… Nope!

Reflexivity:  If  Y Ê X,  then   X ® Y 
Augmentation:  If  X ® Y,  then   XZ ® YZ   for any Z
Transitivity:  If  X ® Y  and  Y ® Z,  then   X ® Z
Union:   If X ® Y  and  X ® Z,   then  X ® YZ
Decomposition:   If X ® YZ,   then  X ® Y  and  X ® Z

36



Attribute Closure (example)

• Does F = {A → B, B → C, C D → E } imply A → E?

§ i.e, is A→E in the closure F+? Equivalently, is E in A+?
• Does F = {A → B, B → C, C D → E } imply A → E?

§ i.e, is A→E in the closure F+? Equivalently, is E in A+?
• Step 1: Result = A

• Step 2: Consider A → B, Result = AB

§ Consider B → C, Result = ABC
§ Consider CD → E, CD is not in ABC, so stop

• Step 3: A+= {ABC}

§ E is NOT in A+, so A → E is NOT in F+
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Attribute Closure (example)

• F = {A →B, AC →D, AB →C}?

• What is X+ for X = A? (i.e. what is the attribute closure 

for A?)

• Answer: A+= ABCD
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Attribute Closure (example)

• R = (A, B, C, G, H, I)

• F = {A → B; A → C; CG → H; CG → I; B → H}

• (AG)+= ?

§ Answer: ABCGHI
• Is AG a candidate key?

§ This question involves two parts:
• 1. Is AG a super key?

– Does AG → R? 

• 2. Is any subset of AG a superkey?
– Does A → R? 
– Does G → R? 

39

Uses of Attribute Closure

• There are several uses of the attribute closure 
algorithm:

§ Testing for superkey:
• To test if X is a superkey, we compute X+, and check if X+ 

contains all attributes of R.

• Testing functional dependencies

§ To check if a functional dependency X → Y holds (or, 
in other words, is in F+), just check if Y ⊆ X+.

§ That is, we compute X+ by using attribute closure,  
and then check if it contains Y.

§ Is a simple and cheap test, and very useful
• Computing closure of F

40



Thanks for that…

• So we know a lot about FDs

• We could care less, right?
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Normal Forms

• Returning to the issue of schema refinement, the first 
question to ask is whether any refinement is needed!

• Normalization  results with high quality designs that meet 
the desirable properties stated previously
§ Pays particular attention to normalization only up to 3NF, 

BCNF, or at most 4NF
§ If a relation is in a certain normal form (BCNF, 3NF etc.), it is 

known that certain kinds of problems are 
avoided/minimized.  

• Do not need to normalize to the highest possible normal 
form

• Used to help us decide whether decomposing the relation will 
help.

42



Normal Forms

• Role of FDs in detecting redundancy:
§ Consider a relation R with 3 attributes, ABC.  

• Given A → B:   Several tuples could have the same A 
value, and if so, they’ll all have the same B value -
redundancy!

• No FDs hold:   There is no redundancy here

• Note:  A → B potentially causes problems.  However, if 
we know that no two tuples share the same value for A, 
then such problems cannot occur  (a normal form)
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Normal Forms

• First normal form (1NF)

§ Every field must contain atomic values, i.e. no sets or lists.
§ Essentially all relations are in this normal form

• Second normal form (2NF)

§ Any relation in 2NF is also in 1NF
§ All the non-key attributes must depend upon the WHOLE 

of the candidate key rather than just a part of it.
• Boyce-Codd Normal Form (BCNF)

§ Any relation in BCNF is also in 2NF
• Third normal form (3NF)

§ Any relation in BCNF is also in 3NF

44
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First Normal Form

To move to First Normal Form a relation 
must contain only atomic values at each 
row and column.

46

First Normal Form



First Normal Form

• Does not allow nested relations 

§ Each tuple can have a relation within it

• To change to 1NF, multi-valued attributes must be 

normalized, e.g., by 

§ A) Introducing a new relation for the multi-valued 
attribute

§ B) Replicating the tuple for each multi-value
§ C) introducing an own attribute for each multi-value (if 

there is a small maximum number of values)

• Solution A is usually considered the best
47

Second Normal Form

• Second normal form (2NF)

§ Any relation in 2NF is also in 1NF
§ All the non-key attributes must depend upon the 

WHOLE of the candidate key rather than just a part of 
it.

• It is only relevant when the key is composite, i.e., consists of 
several fields.

§ e.g. Consider a relation:
Inventory(part, warehouse, quantity, warehouse_address)

• Suppose {part, warehouse} is a candidate key.
• warehouse_address depends upon warehouse alone -

2NF violation
• Solution: decompose

48



Unnormalized Relation

49

Patient # Surgeon # Surg. date Patient Name Patient Addr Surgeon Surgery Postop drug Drug side effects

1111
145
311

Jan 1, 
1995; June 
12, 1995 John White

15 New St. 
New York, 
NY

Beth 
Little 
Michael 
Diamond

Gallstones 
removal; 
Kidney 
stones 
removal

Penicillin,  
none-

rash                
none

1234
243
467

Apr 5, 1994 
May 10, 
1995 Mary Jones

10 Main St. 
Rye, NY

Charles 
Field 
Patricia 
Gold

Eye 
Cataract 
removal 
Thrombosis 
removal

Tetracycline 
none

Fever            
none

2345 189 Jan 8, 1996 Charles Brown

Dogwood 
Lane 
Harrison, NY

David 
Rosen

Open 
Heart 
Surgery

Cephalospori
n none

4876 145 Nov 5, 1995 Hal Kane

55 Boston 
Post Road, 
Chester, CN

Beth 
Little

Cholecyste
ctomy Demicillin none

5123 145
May 10, 
1995 Paul Kosher

Blind Brook 
Mamaroneck, 
NY

Beth 
Little

Gallstones 
Removal none none

6845 243

Apr 5, 1994  
Dec 15, 
1984 Ann Hood

Hilton Road 
Larchmont, 
NY

Charles 
Field

Eye 
Cornea 
Replaceme
nt Eye 
cataract 
removal Tetracycline Fever

First Normal Form

Patient # Surgeon # Surgery DatePatient NamePatient Addr Surgeon Name Surgery Drug adminSide Effects

1111 145 01-Jan-95 John White

15 New St. 
New York, 
NY Beth Little

Gallstone
s removal Penicillin rash

1111 311 12-Jun-95 John White

15 New St. 
New York, 
NY

Michael 
Diamond

Kidney 
stones 
removal none none

1234 243 05-Apr-94 Mary Jones
10 Main St. 
Rye, NY Charles Field

Eye 
Cataract 
removal

Tetracyclin
e Fever

1234 467 10-May-95 Mary Jones
10 Main St. 
Rye, NY Patricia Gold

Thrombos
is removal none none

2345 189 08-Jan-96
Charles 
Brown

Dogwood 
Lane 
Harrison, 
NY David Rosen

Open 
Heart 
Surgery

Cephalosp
orin none

4876 145 05-Nov-95 Hal Kane

55 Boston 
Post Road, 
Chester, 
CN Beth Little

Cholecyst
ectomy Demicillin none

5123 145 10-May-95 Paul Kosher

Blind Brook 
Mamaronec
k, NY Beth Little

Gallstone
s 
Removal none none

6845 243 05-Apr-94 Ann Hood

Hilton Road 
Larchmont, 
NY Charles Field

Eye 
Cornea 
Replacem
ent

Tetracyclin
e Fever

6845 243 15-Dec-84 Ann Hood

Hilton Road 
Larchmont, 
NY Charles Field

Eye 
cataract 
removal none none50



Second Normal Form

Patient # Surgeon # Surgery Date Surgery Drug Admin Side Effects

1111 145 01-Jan-95
Gallstones 
removal Penicillin rash

1111 311 12-Jun-95

Kidney 
stones 
removal none none

1234 243 05-Apr-94
Eye Cataract 
removal Tetracycline Fever

1234 467 10-May-95
Thrombosis 
removal none none

2345 189 08-Jan-96
Open Heart 
Surgery

Cephalospori
n none

4876 145 05-Nov-95
Cholecystect
omy Demicillin none

5123 145 10-May-95
Gallstones 
Removal none none

6845 243 15-Dec-84
Eye cataract 
removal none none

6845 243 05-Apr-94
Eye Cornea 
Replacement Tetracycline Fever
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Third Normal Form

• A relation is said to be in Third Normal Form if 
there is no transitive functional dependency 
between nonkey attributes

§ When one nonkey attribute can be determined with 
one or more nonkey attributes there is said to be a 
transitive functional dependency.

• The side effect column in the Surgery table is 
determined by the drug administered 

§ Side effect is transitively functionally dependent on 
drug so Surgery is not 3NF

52



Third Normal Form

Patient # Surgeon # Surgery Date Surgery Drug Admin

1111 145 01-Jan-95 Gallstones removal Penicillin

1111 311 12-Jun-95
Kidney stones 
removal none

1234 243 05-Apr-94 Eye Cataract removal Tetracycline

1234 467 10-May-95 Thrombosis removal none

2345 189 08-Jan-96 Open Heart Surgery Cephalosporin

4876 145 05-Nov-95 Cholecystectomy Demicillin

5123 145 10-May-95 Gallstones Removal none

6845 243 15-Dec-84 Eye cataract removal none

6845 243 05-Apr-94
Eye Cornea 
Replacement Tetracycline
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Normal Forms
• Question: is any refinement needed??!

• If a relation is in a normal form (BCNF, 3NF etc.):
§ we know that certain problems are avoided/minimized.  
§ helps decide whether decomposing a relation is useful.

• Role of FDs in detecting redundancy:
§ Consider a relation R with 3 attributes, ABC.  

• No (non-trivial) FDs hold:   There is no redundancy here.
• Given A ® B:   If A is not a key, then several tuples could have the 

same A value, and if so, they’ll all have the same B value!

• 1st Normal Form – all attributes are atomic (i.e., “flat tables”)
• 1st É2nd (of historical interest) É 3rd É Boyce-Codd É … 54



Boyce-Codd Normal Form  (BCNF)

Relation R is in BCNF if, for all X →
A in F,
§ A Î X (called a trivial FD), 

or

§ X is a superkey (i.e., 
contains a key of R)

R A relation

F The set of FD hold over R
X A subset of the attributes of R
A An attribute of R

X1 . . . X7 A B C

X1 . . . X6 A X7 C

X
R

Trivial FD

X
R

[X1 ··· X7] is a superkey

55

BCNF is Desirable

Consider the relation:                               X→A

“X →A” Þ The 2nd tuple also has y2 in the third column
Þ an example of redundancy

Such a situation cannot arise in a BCNF relation:
BCNF Þ X must be a key

Þ we must have X→Y
Þ we must have “y1 = y2” (1)

X→A Þ The two tuples have the same value for A             (2)
(1) & (2)  Þ The two tuples are identical

Þ This situation cannot happen in a relation

X Y A
x y1 y2

x y2 ?
Should be 

y2

Not in 
BCNF

56

Can you 
guess?



Boyce-Codd Normal Form  
(BCNF)

• In other words, if you can guess 
the value of the missing attribute 
then the relation is not in BCNF

X Y A 

x y1 a 
x y2 ? 
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BCNF:  Desirable Property

A relation is in BCNF
Þ every entry records a piece of information that cannot 

be inferred (using only FDs) from the other entries in the 
relation instance

Þ No redundant information !

A relation R(ABC)

• B→C: The value of B determines C, and the value of C can 
be inferred from another tuple with the same B value       
Þ redundancy !   (not BCNF)

• A→BC:  Although the value of A determines the values of B
and C, we cannot infer their values from other tuples 
because no two tuples in R have the same value for A
Þ no redundancy !   (BCNF)

Key constraint is the only 
form of FDs allowed in BCNF
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Boyce-Codd Normal Form

• Most 3NF relations are also BCNF relations.

• A 3NF relation is NOT in BCNF if:

§ Candidate keys in the relation are composite keys 
(they are not single attributes)

§ There is more than one candidate key in the relation, 
and

§ The keys are not disjoint, that is, some attributes in 
the keys are common
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Boyce-Codd Normal Form -
Alternative Formulation

“The key, the whole key, and 
nothing but the key, so help 
me Codd.”
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Most 3NF Relations are also BCNF – Is this 
one?

Patient # Patient Name Patient Address

1111 John White
15 New St. New 
York, NY

1234 Mary Jones
10 Main St. Rye, 
NY

2345
Charles 
Brown

Dogwood Lane 
Harrison, NY

4876 Hal Kane
55 Boston Post 
Road, Chester, 

5123 Paul Kosher
Blind Brook 
Mamaroneck, NY

6845 Ann Hood
Hilton Road 
Larchmont, NY
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BCNF Relations

Patient # Patient Name

1111 John White

1234 Mary Jones

2345
Charles 
Brown

4876 Hal Kane

5123 Paul Kosher

6845 Ann Hood

Patient # Patient Address

1111
15 New St. New 
York, NY

1234
10 Main St. Rye, 
NY

2345
Dogwood Lane 
Harrison, NY

4876
55 Boston Post 
Road, Chester, 

5123
Blind Brook 
Mamaroneck, NY

6845
Hilton Road 
Larchmont, NY
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Decomposition of a Relation 
Scheme

• If a relation is not in a desired normal form, it can be 
decomposed into multiple relations that each are in that 
normal form.

• Suppose that relation R contains attributes A1 ... An.  A 
decomposition of R consists of replacing R by two or more 
relations such that:
§ Each new relation scheme contains a subset of the 

attributes of R, and
§ Every attribute of R appears as an attribute of at least 

one of the new relations.
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Example

• SNLRWH has FDs  S ® SNLRWH  and  R ® W
• Q: Is this relation in BCNF?

Hourly_Emps

No, The second FD causes a violation;              
W values repeatedly associated with R values.

S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 

 

64



Decomposing a Relation
• Easiest fix is to create a relation RW to store these 

associations, and to remove W from the main 
schema: 

•Decompositions should be used only when needed.
–Q: potential problems of decomposition?

•Q: Are both of these relations now in BCNF?
Hourly_Emps2

Wages

S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 

 

R W 
8 10 
5 7 
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Refining an ER Diagram

• 1st diagram becomes:           
Workers(S,N,L,D,Si)       
Departments(D,M,B)
§ Lots associated with 

workers.
• Suppose all workers in            

a dept are assigned the 
same lot:     D ® L

• Redundancy; fixed by: 
Workers2(S,N,D,Si) 
Dept_Lots(D,L) 
Departments(D,M,B)

• Can fine-tune this: 
Workers2(S,N,D,Si) 
Departments(D,M,B,L) 

lot
dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

lot

dname
budget

did

since
name

Works_In DepartmentsEmployees

ssn

Before:

After:
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Example: Decomposition into BCNF

• Given: relation R  with FD’s F.

• Look among the given FD’s for a BCNF violation X ->B.

§ If any FD following from F  violates BCNF, then there 
will surely be an FD in F  itself that violates BCNF.

• Compute X +.

§ Not all attributes, or else X is a superkey.
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Decompose R  Using X  -> B

• Replace R  by relations with schemas:

§ R1 = X +.
§ R2 = (R – X +) U X.

• Project given FD’s F  onto the two new relations.

§ Compute the closure of F  = all nontrivial FD’s that 
follow from F.

§ Use only those FD’s whose attributes are all in R1 or 
all in R2.
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Decomposition Picture
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R-X + X X +-X

R2

R1

R

Problems with Decompositions
• There are three potential problems to consider:

1) May be impossible to reconstruct the original relation!  
(Lossiness)
• Fortunately, not in the SNLRWH example.

2) Dependency checking may require joins.
• Fortunately, not in the SNLRWH example.

3) Some queries become more expensive.  
• e.g.,  How much does Guldu earn? 

Lossiness (#1) cannot be allowed
#2 and #3 are design tradeoffs:  Must consider these 

issues vs. redundancy.
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Lossless Decomposition 
(example)

=


S N L R H 
123-22-3666 Attishoo 48 8 40 
231-31-5368 Smiley 22 8 30 
131-24-3650 Smethurst 35 5 30 
434-26-3751 Guldu 35 5 32 
612-67-4134 Madayan 35 8 40 

 

R W 
8 10 
5 7 

 

S N L R W H 
123-22-3666 Attishoo 48 8 10 40 
231-31-5368 Smiley 22 8 10 30 
131-24-3650 Smethurst 35 5 7 30 
434-26-3751 Guldu 35 5 7 32 
612-67-4134 Madayan 35 8 10 40 
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Lossy Decomposition (example)

A ® B; C ® B

A B C 
1 2 3 
4 5 6 
7 2 8 

 

A B 
1 2 
4 5 
7 2 

 

B C 
2 3 
5 6 
2 8 

 

A B C 
1 2 3 
4 5 6 
7 2 8 
1 2 8 
7 2 3 

 

=A B 
1 2 
4 5 
7 2 

 

B C 
2 3 
5 6 
2 8 
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Lossless Decomposition
• Decomposition of R into X and Y is lossless-join w.r.t.   a 

set of FDs F if, for every instance r that satisfies F:
(r)              (r)   =  r

• The decomposition of R into X and Y is  lossless with 
respect to F if and only if F+ contains:

X Ç Y ® X,   or
X Ç Y ® Y

In other words, the common attributes must contain a key 
for either

in previous example: decomposing ABC into AB and BC is lossy, 
because intersection (i.e., “B”) is not a key of either resulting 
relation.

• Useful result: If W ® Z holds over R and  W Ç Z is 
empty, then decomposition of R into R-Z and WZ is loss-
less.

π X π Y
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Lossless Decomposition 
(example)

A ® B; C ® B

But, now we can’t check A ® B without doing a join!

 =

A B C 
1 2 3 
4 5 6 
7 2 8 

 

A C 
1 3 
4 6 
7 8 

 

B C 
2 3 
5 6 
2 8 

 

A C 
1 3 
4 6 
7 8 

 

B C 
2 3 
5 6 
2 8 

 

A B C 
1 2 3 
4 5 6 
7 2 8 
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Dependency Preserving Decomposition

• If we decompose a relation R into relations R1 and R2, 
All dependencies of R either must be a part of R1 or R2 

or must be derivable from combination of FD’s of R1 
and R2.
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Dependency Preserving 
Decomposition

• Dependency preserving decomposition (Intuitive):
§ If R is decomposed into X, Y and Z, and we 

enforce the FDs that hold individually on X, on Y 
and on Z, then all FDs that were given to hold 
on R must also hold.  (Avoids Problem #2 on 
our list.)

• The projection of F on attribute set X (denoted FX ) is the 
set of FDs U ® V in F+ (closure of F , not just F ) such that 
all of the attributes on both sides of the f.d. are in X.
§ That is: U and V are subsets of X 
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Dependency Preserving Decompositions 
(Contd.)

• Decomposition of R into X and Y is dependency
preserving if  (FX È FY ) +  =  F +

§ i.e., if we consider only dependencies in the closure F + that 
can be checked in X without considering Y, and in Y without 
considering X,  these imply all dependencies in F +.

• Important to consider F + in this definition:
§ ABC,  A ® B,  B ® C,  C ® A, decomposed into AB and BC.
§ Is this dependency preserving?  Is  C ® A  preserved?????

• note: F + contains F È {A ® C, B ® A, C ® B}, so…

• FAB contains A ®B and  B ® A; FBC contains B ® C and C ® B 
• So, (FAB È FBC)+ contains C ® A
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Decomposition into BCNF
• Consider relation R with FDs F.  If X ® Y violates BCNF, 

decompose R into  R - Y and XY (guaranteed to be loss-less).
§ Repeated application of this idea will give us a collection of 

relations that are in BCNF; lossless join decomposition, and 
guaranteed to terminate.

§ e.g.,  CSJDPQV,  key C,  JP ® C,  SD ® P,   J ® S
§ {contractid, supplierid, projectid,deptid,partid, qty, value}
§ To deal with SD ® P, decompose into  SDP, CSJDQV.
§ To deal with J ® S, decompose CSJDQV into JS and CJDQV
§ So we end up with: SDP, JS, and CJDQV

• Note: several dependencies may cause violation of BCNF.  The order in 
which we fix them could lead to very different sets of relations!
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BCNF and Dependency Preservation

• In general, there may not be a dependency 
preserving decomposition into BCNF.
§ e.g.,  CSZ,  CS ® Z,  Z ® C
§ Can’t decompose while preserving 1st FD;  not in 

BCNF.
• Similarly,  decomposition of CSJDPQV into SDP, JS 

and CJDQV is not dependency preserving  (w.r.t. 
the FDs  JP ® C,  SD ® P  and  J ® S).

• {contractid, supplierid, projectid,deptid,partid, qty, 
value}
§ However, it is a lossless join decomposition.
§ In this case, adding   JPC to the collection of relations 

gives us a dependency preserving decomposition.
• but JPC tuples are stored only for checking the f.d.  

(Redundancy!)
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Quiz

• Consider a schema R(A,B,C,D) and functional 
dependencies A->B and C->D. Then the decomposition 

of R into R1(AB) and R2(CD) is:

A. dependency preserving and lossless join
B. lossless join but not dependency preserving
C. dependency preserving but not lossless join
D. not dependency preserving and not lossless join
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Quiz

• Consider a schema R(A,B,C,D) and functional 
dependencies A->B and C->D. Then the decomposition 

of R into R1(AB) and R2(CD) is:

A. dependency preserving and lossless join
B. lossless join but not dependency preserving
C. dependency preserving but not lossless join
D. not dependency preserving and not lossless join
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Summary of Schema Refinement

• BCNF: each field contains information that cannot be 
inferred using only FDs.  

§ ensuring BCNF is a good heuristic.
• Not in BCNF?  Try decomposing into BCNF relations.

§ Must consider whether all FDs are preserved!  
• Lossless-join, dependency preserving decomposition 

into BCNF impossible?  Consider lower NF e.g., 3NF.

§ Same if BCNF decomp is unsuitable for typical queries
§ Decompositions should be carried out and/or re-

examined while keeping performance requirements in 
mind.
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Higher Normal Forms 

• BCNF is the “ultimate” normal form when using only 
functional dependencies as constraints

§ “Every attribute depends on a key, a whole key, and 
nothing but a key, so help me Codd.”

• However, there are higher normal forms (4NF to 6NF) 
that rely on generalizations of FDs

§ 4NF: Multivalued dependencies
§ 5NF/6NF: Join dependencies
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Fourth Normal Form

• Any relation is in Fourth Normal Form if it is BCNF and
any multivalued dependencies are trivial

• Eliminate non-trivial multivalued dependencies by 
projecting into simpler tables
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Fifth Normal Form

• A relation is in 5NF if every join dependency in the 
relation is implied by the keys of the relation

• Implies that relations that have been decomposed in 
previous NF can be recombined via natural joins to 
recreate the original 1NF relation
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Normalization

• Normalization is performed to reduce or eliminate 
Insertion, Deletion or Update anomalies.

• However, a completely normalized database may not 
be the most efficient or effective implementation.

• “Denormalization” is sometimes used to improve 
efficiency.
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Denormalizatin

• Normalization in real world databases:

§ Guided by normal form theory
§ But: Normalization is not everything!
§ Trade-off: Redundancy/anomalies vs. speed
§ General design: Avoid redundancy wherever possible, 

because redundancies often lead to inconsistent 
states

§ An exception: Materialized views (≈ precomputed
joins) – expensive to maintain, but can boost read 
efficiency 
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Denormalization

• Usually, a schema in a higher normal form is better 
than one in a lower normal form

§ However, sometimes it is a good idea to artificially 
create lower-form schemas to, e.g., increase read 
performance

§ This is called denormalization

• Denormalization usually increases query speed and 
decreases update efficiency due to the introduction of 

redundancy
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Denormalization

• Rules of thumb:

§ A good data model almost always directly leads to 
relational schemas in high normal forms

• Carefully design your models!
• Think of dependencies and other constraints!
• Have normal forms in mind during modeling!

• – Denormalize only when faced with a performance problem 
that cannot be resolved by:

§ Money
§ hardware scalability
§ current SQL technology
§ network optimization
§ Parallelization
§ other performance techniques
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ADDITIONAL SLIDES (FYI)
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BCNF vs 3NF

• BCNF:  For every functional dependency X->Y in a set F of 
functional  dependencies over relation R, either:  
§ Y is a subset of X or,
§ X is a superkey of R

• 3NF:  For every functional dependency X->Y in a set F of functional  
dependencies over relation R, either:  
§ Y is a subset of X or,
§ X is a superkey of R, or
§ Y is a subset of K for some key K of R

• N.b., no subset of a key is a key

3NF Schema

Account Client Office

A Joe 1

B Mary 1

A John 1

C Joe 2

For every functional
dependency X->Y in a set F
of functional  dependencies
over relation R, either:  

– Y is a subset of X or,
– X is a superkey of R, or
– Y is a subset of K for 

some key K of R
Client, Office -> Client, Office, Account
Account -> Office



Account Client Office

A Joe 1

B Mary 1

A John 1

C Joe 2

For every functional
dependency X->Y in a set F
of functional  dependencies
over relation R, either:  

– Y is a subset of X or,
– X is a superkey of R, or
– Y is a subset of K for 

some key K of R
Client, Office -> Client, Office, Account
Account -> Office

3NF Schema

BCNF vs 3NF

For every functional
dependency X->Y in a set 

F
of functional  

dependencies
over relation R, either:  

§ Y is a subset of X or,
§ X is a superkey of R
§ Y is a subset of K for 

some key K of R

3NF has some redundancy
BCNF does not

Unfortunately, BCNF is not dependency preserving, but 3NF is

Client, Office -> Client, Office, Account
Account -> Office

Account Client Office

A Joe 1

B Mary 1

A John 1

C Joe 2

Account Office

A 1

B 1

C 2

Account Client

A Joe

B Mary

A John

C Joe

Account -> Office

No non-trivial FDs

Lossless 
decomposition



Closure

• Want to find all attributes A such that X -> A is true, given a 
set of functional dependencies F

define closure of X as X*

Closure(X): 
c = X
Repeat

old = c
if there is an FD Z->V such that 
Z Ì c and 
V Ë c then 

c = c U V 
until old = c
return c

BCNFify
Closure(X): 
c = X
Repeat

old = c
if there is an FD Z->V such that 
Z Ì c and 
V Ë c then 

c = c U V
until old = c
return c

BCNFify(schema R, functional dependency set F):
D = {{R,F}}
while there is a schema S with dependencies F' in D that is not in BCNF, do:

given X->Y as a BCNF-violating FD in F
such that XY is in S
replace S in D with 

S1={XY,F1} and 
S2={(S-Y) U X, F2} 

where F1 and F2 are the FDs in F over S1 or S2
(may need to split some FDs using decomposition)

End
return D

For every functional
dependency X->Y in a set F
of functional  dependencies
over relation R, either:  

– Y is a subset of X or,
– X is a superkey of R



Third Normal Form  (3NF)
• Reln R with FDs F is in 3NF if, for all X ® A in F+

A Î X   (called a trivial FD), or
X is a superkey of R, or
A is part of some candidate key (not superkey!) for R.       

(sometimes stated as “A is prime”)
• Minimality of a key is crucial in third condition above!  
• If R is in BCNF, obviously in 3NF.
• If R is in 3NF, some redundancy is possible.  It is a 

compromise, used when BCNF not achievable (e.g., no 
``good’’ decomp, or performance considerations).
§ Lossless-join, dependency-preserving decomposition of R 

into a collection of 3NF relations always possible.
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What Does 3NF Achieve?
• If 3NF violated by X ® A, one of the following holds:

§ X is a subset of some key K (“partial dependency”)
• We store (X, A) pairs redundantly.
• e.g. Reserves SBDC (C is for credit card) with key SBD and  S ® C

§ X is not a proper subset of any key. (“transitive dep.”)
• There is a chain of FDs  K ® X ® A, which means that we cannot 

associate an X value with a K value unless we also associate an A 
value with an X value (different K’s, same X implies same A!) –
problem with initial SNLRWH example.

• But: even if R is in 3NF, these problems could arise.
§ e.g., Reserves  SBDC (note: “C” is for credit card here),  S ® C,   C 
® S is in 3NF (why?), but for each reservation of sailor S,  same 
(S, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.
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Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp into 
BCNF can be used to obtain a lossless join decomp into 
3NF (typically, can stop earlier) but does not ensure 
dependency preservation.

• To ensure dependency preservation, one idea:
§ If  X ® Y  is not preserved,  add relation XY.
Problem is that XY may violate 3NF!  e.g.,  consider the 

addition of CJP to `preserve’ JP ® C.   What if we also 
have  J ® C ?

• Refinement:  Instead of the given set of FDs F, use a 
minimal cover for F.
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Minimal Cover for a Set of FDs

• Minimal cover G for a set of FDs F:
§ Closure of F  =  closure of G.
§ Right hand side of each FD in G is a single attribute.
§ If we modify G by deleting an FD or by deleting attributes 

from an FD in G, the closure changes.
• Intuitively, every FD in G is needed, and ``as small as 

possible’’ in order to get the same closure as F.
• e.g.,  A ® B,  ABCD ® E,  EF ® GH,  ACDF ® EG has the 

following minimal cover:
§ A ® B,  ACD ® E,  EF ® G  and  EF ® H

• M.C. implies 3NF, Lossless-Join, Dep. Pres. Decomp!!! 
§ (in book)
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