
SQL: The Query Language

Fall 2019

Life is just a bowl of queries.

-Anon

1

Relational Query Languages
• A major strength of the relational model: supports

simple, powerful querying of data.
• Query languages can be divided into two parts

– Data Manipulation Language (DML)

• Allows for queries and updates

– Data Definition Language (DDL)

• Define and modify schema (at all 3 levels)

• Permits database tables to be created or deleted. It also

defines indexes (keys), specifies links between tables, and

imposes constraints between tables

• The DBMS is responsible for efficient evaluation.
– The key: precise semantics for relational queries.

– Allows the optimizer to extensively re-order operations,

and still ensure that the answer does not change.

– Internal cost model drives use of indexes and choice of

access paths and physical operators.

2

The SQL Query Language

• The most widely used relational query language.

• Originally IBM, then ANSI in 1986

• Current standard is SQL-2008
• 2003 was last major update: XML, window functions,

sequences, auto-generated IDs.

• Not fully supported yet

• SQL-1999 Introduced “Object-Relational” concepts.

• Also not fully supported yet.

• SQL92 is a basic subset
• Most systems support at least this

• PostgreSQL has some “unique” aspects (as do most

systems).

• SQL is not synonymous with Microsoft’s “SQL Server”

3

The SQL DML

• Single-table queries are straightforward.

• To find all 18 year old students, we can write:

SELECT *
FROM Students
WHERE age=18

SELECT *
FROM Students
WHERE Students.age=18

SELECT *
FROM Students S
WHERE S.age=18

4

The SQL DML

• Single-table queries are straightforward.

• To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

• To find just names and logins, replace the first line:

SELECT S.name, S.login
5

Querying Multiple Relations
• Can specify a join over two tables as follows:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B'

result =
S.name E.cid

Jones History105

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Note: obviously no
referential integrity
constraints have
been used here.

6

Basic SQL Query

• relation-list : A list of relation names

– possibly with a range-variable after each
name

• target-list : A list of attributes of tables in
relation-list

• qualification : Comparisons combined using
AND, OR and NOT.

– Comparisons are Attr op const or Attr1 op
Attr2, where op is one of =≠<>≤≥

• DISTINCT: optional keyword indicating that the

answer should not contain duplicates.

– In SQL SELECT, the default is that duplicates are

not eliminated! (Result is called a “multiset”)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

7

Query Semantics

• Semantics of an SQL query are defined in terms of

the following conceptual evaluation strategy:

1. do FROM clause: compute cross-product of tables
(e.g., Students and Enrolled).

2. do WHERE clause: Check conditions, discard

tuples that fail. (i.e., “selection”).

3. do SELECT clause: Delete unwanted fields. (i.e.,

“projection”).

4. If DISTINCT specified, eliminate duplicate rows.

Probably the least efficient way to compute a query!

– An optimizer will find more efficient strategies to
get the same answer.

8

Step 1 – Cross Product

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B'

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade
53666 Jones jones@cs 18 3.4 53831 Carnatic101 C
53666 Jones jones@cs 18 3.4 53832 Reggae203 B
53666 Jones jones@cs 18 3.4 53650 Topology112 A
53666 Jones jones@cs 18 3.4 53666 History105 B
53688 Smith smith@ee 18 3.2 53831 Carnatic101 C
53688 Smith smith@ee 18 3.2 53831 Reggae203 B
53688 Smith smith@ee 18 3.2 53650 Topology112 A
53688 Smith smith@ee 18 3.2 53666 History105 B

 sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

9

Step 2) Discard tuples that fail predicate

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade
53666 Jones jones@cs 18 3.4 53831 Carnatic101 C
53666 Jones jones@cs 18 3.4 53832 Reggae203 B
53666 Jones jones@cs 18 3.4 53650 Topology112 A
53666 Jones jones@cs 18 3.4 53666 History105 B
53688 Smith smith@ee 18 3.2 53831 Carnatic101 C
53688 Smith smith@ee 18 3.2 53831 Reggae203 B
53688 Smith smith@ee 18 3.2 53650 Topology112 A
53688 Smith smith@ee 18 3.2 53666 History105 B

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B' 10

Step 3) Discard Unwanted Columns

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade
53666 Jones jones@cs 18 3.4 53831 Carnatic101 C
53666 Jones jones@cs 18 3.4 53832 Reggae203 B
53666 Jones jones@cs 18 3.4 53650 Topology112 A
53666 Jones jones@cs 18 3.4 53666 History105 B
53688 Smith smith@ee 18 3.2 53831 Carnatic101 C
53688 Smith smith@ee 18 3.2 53831 Reggae203 B
53688 Smith smith@ee 18 3.2 53650 Topology112 A
53688 Smith smith@ee 18 3.2 53666 History105 B

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B' 11

Null Values

• Field values in a tuple are sometimes unknown
(e.g., a rating has not been assigned) or
inapplicable (e.g., no spouse’s name).
– SQL provides a special value null for such situations.

• The presence of null complicates many issues. E.g.:
– Special operators needed to check if value is/is not null.

– Is rating>8 true or false when rating is equal to null?

What about AND, OR and NOT connectives?

– We need a 3-valued logic (true, false and unknown).

– Meaning of constructs must be defined carefully. (e.g.,

WHERE clause eliminates rows that don’t evaluate to

true.)

– New operators (in particular, outer joins)
possible/needed.

12

Null Values – 3 Valued Logic

AND T F Null

T

F

NULL

OR T F Null
T

F

NULL

(null > 0)

(null + 1)

(null = 0)

null AND true

is null

is null

is null

is null

T

F Null

T F

F F

Null

NullF

F

T T

T

T NullNullNull
13

Now the Details

We will use these
instances of
relations in our
examples.

Reserves

Sailors

Boats bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

sid bid day
22 101 10/10/96
95 103 11/12/96

14

Example Schemas (in SQL DDL)

CREATE TABLE Sailors (sid INTEGER, sname
CHAR(20),rating INTEGER, age REAL,

PRIMARY KEY sid)

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

Consider the use
Of VARCHAR instead

15

Example Schemas (in SQL DDL)

CREATE TABLE Boats (bid INTEGER, bname CHAR (20),
color CHAR(10)

PRIMARY KEY bid)

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

16

Example Schemas (in SQL DDL)

CREATE TABLE Reserves (sid INTEGER, bid INTEGER,
day DATE,

PRIMARY KEY (sid, bid, day),
FOREIGN KEY sid REFERENCES Sailors,
FOREIGN KEY bid REFERENCES Boats)

sid bid day
22 101 10/10/96
95 103 11/12/96

17

Another Join Query

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
95 Bob 3 63.5 22 101 10/10/96
95 Bob 3 63.5 95 103 11/12/96

18

Some Notes on Range Variables

• Can associate “range variables” with the

tables in the FROM clause.

– saves writing, makes queries easier to understand

• Needed when ambiguity could arise.

– for example, if same table used multiple times in

same FROM (called a “self-join”)

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors,Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103

Can be

rewritten using

range variables as: 19

More Notes

• Here’s an example where range variables are

required (self-join example):

• Note that target list can be replaced by “*” if

you don’t want to do a projection:

SELECT x.sname, x.age, y.sname, y.age
FROM Sailors x, Sailors y
WHERE x.age > y.age

SELECT *
FROM Sailors x
WHERE x.age > 20 20

Find sailors who’ve reserved at least one boat

• Would adding DISTINCT to this query make

a difference?

• What is the effect of replacing S.sid by

S.sname in the SELECT clause?

– Would adding DISTINCT to this variant of the

query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

21

Expressions

• Can use arithmetic expressions in SELECT

clause (plus other operations we’ll discuss

later)

• Use AS to provide column names

• Can also have expressions in WHERE clause:

SELECT S.age, S.age-5 AS age1, 2*S.age AS age2
FROM Sailors S
WHERE S.sname = ‘dustin’

SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating - 1

22

String operations

`_’ stands for any one character and `%’

stands for 0 or more arbitrary characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

•SQL also supports some string operations

•“LIKE” is used for string matching.

23

Find sid’s of sailors who’ve reserved a red or a green

boat

SELECT DISTINCT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color=‘red’OR B.color=‘green’)

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
UNION SELECT R.sid

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND

B.color=‘green’

(note:
UNION
eliminates
duplicates
by default.
Override w/
UNION ALL)

Vs.

24

Find sid’s of sailors who’ve reserved a red and a green

boat

• If we simply replace OR by AND in the

previous query, we get the wrong answer.

(Why?)

• Instead, could use a self-join:

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color=‘red’ AND B.color=‘green’)

SELECT R1.sid
FROM Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE R1.sid=R2.sid

AND R1.bid=B1.bid
AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

25

AND Continued…

• INTERSECT:
– Can be used to

compute the

intersection of any

two union-

compatible sets of

tuples.

• EXCEPT
– (sometimes called

MINUS)

– Included in the

SQL/92 standard,

but many systems

(including MySQL)

don’t support them.

SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid
AND B.color=‘red’

INTERSECT
SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid
AND B.color=‘green’

Key field!

26

Nested Queries

• Powerful feature of SQL: WHERE clause can itself
contain an SQL query!
– Actually, so can FROM and HAVING clauses.

• To find sailors who’ve not reserved #103, use NOT IN.
• To understand semantics of nested queries:

– think of a nested loops evaluation: For each Sailors

tuple, check the qualification by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Names of sailors who’ve reserved boat #103:

27

Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN.
• Can also specify NOT EXISTS
• If UNIQUE is used, and * is replaced by R.bid, finds

sailors with at most one reservation for boat #103.
– UNIQUE checks for duplicate tuples in a subquery;

• Subquery must be recomputed for each Sailors tuple.
– Think of subquery as a function call that runs a query!

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

Tests whether the set
is nonempty

28

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE. Can
also use NOT IN, NOT EXISTS and NOT UNIQUE.

• Also available: op ANY, op ALL
• Find sailors whose rating is greater than that

of some sailor called Horatio:

SELECT *
FROM Sailors S
WHERE S.rating > ANY

(SELECT S2.rating
FROM Sailors S2
WHERE S2.sname=‘Horatio’)

29

Rewriting INTERSECT Queries Using IN

• Similarly, EXCEPT queries re-written using NOT IN.
• How would you change this to find names (not sid’s) of

Sailors who’ve reserved both red and green boats?

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid

AND B.color=‘red’
AND R.sid IN (SELECT R2.sid

FROM Boats B2, Reserves R2
WHERE R2.bid=B2.bid
AND B2.color=‘green’)

30

Division in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B

that doesn’t have ...

a Reserves tuple showing S reserved B

Find names of sailors who’ve reserved all boats.

Recall Exists Tests whether the set is nonempty

31

Division Operations in SQL (1)
Find names of sailors who’ve

reserved all boat:
SELECT S.sname
FROM Sailors S
WHERE NOT EXIST ((SELECT B.bid

FROM Boats B) EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid = S.sid))

All boats
All boats reserved

by the sailor

Boats not reserved
by the sailor

The sailor
reserved all boats

32

Division Operations in SQL (2)

Find names of sailors who’ve
reserved all boat:

SELECT S.sname
FROM Sailors S
WHERE NOT EXIST ((SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid = B.bid

AND R.sid = S.sid))

Sailor S such that …
there is no boat B without …

a Reserves tuple showing S reserved B.

Sailor S
reserved

boat B

such that
there is

no boat B
without a

reservation

Sailor S

showing

33

SQL Operators

• BETWEEN
• NOT BETWEEN
• IN
• UNION [DISTINCT | ALL]

• EXCEPT
– Not Supported in MySQL

34

SELECT * FROM Products
WHERE (Price BETWEEN 10 AND 20)
AND NOT CategoryID IN (1,2,3);

More on Set-Comparison Operators

• op ANY, op ALL, where op: ˃, ˂, =, ≠, ≥, ≤

Find sailors whose rating is greater than that of some sailor
called Horatio

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

>ANY means greater than at least one value
>ALL means greater than every value

35

ARGMAX?

• The sailor with the highest rating
– what about ties for highest?!

SELECT *
FROM Sailors S
WHERE S.rating >= ALL

(SELECT S2.rating
FROM Sailors S2)

SELECT *
FROM Sailors S
WHERE S.rating =
(SELECT MAX(S2.rating)

FROM Sailors S2)

SELECT *
FROM Sailors S
ORDER BY rating DESC
LIMIT 1;

36

Joins

Explicit join semantics needed unless it is an
INNER join (INNER is default)

SELECT (column_list)
FROM table_name

[INNER | {LEFT |RIGHT | FULL } OUTER] JOIN table_name
ON qualification_list

WHERE …

37

Inner Join

Selects records that have matching values in both tables.

SELECT s.sid, s.name, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid

Returns only those sailors who have reserved boats

SQL-92 also allows:
SELECT s.sid, s.name, r.bid
FROM Sailors s NATURAL JOIN Reserves r

“NATURAL” means equi-join for each pair of attributes with
the same name (may need to rename with “AS”)

38

SELECT s.sid, s.name, r.bid

FROM Sailors s INNER JOIN Reserves r

ON s.sid = r.sid

s.name s.sid s.name r.bid
Dustin 22 Dustin 101
Lubber 95 Bob 103

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

sid bid day
22 101 10/10/96
95 103 11/12/96

39

Outer Joins

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

S1

S1 R1 sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96

31 lubber 8 55.55 null null

58 rusty 10 35.0 103 11/12/96
No match

in R1

No “sid = 31”

40

Left Outer Join

Left Outer Join returns all matched rows, plus all
unmatched rows from the table on the left of the join
clause

(use nulls in fields of non-matching tuples)

SELECT s.sid, s.name, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r
ON s.sid = r.sid

Returns all sailors & information on whether they have
reserved boats

41

SELECT s.sid, s.name, r.bid

FROM Sailors s LEFT OUTER JOIN Reserves r

ON s.sid = r.sid

s.sid s.name r.bid
22 Dustin 101
95 Bob 103
31 Lubber null

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

sid bid day
22 101 10/10/96
95 103 11/12/96

42

Right Outer Join

Right Outer Join returns all matched rows, plus
all unmatched rows from the table on the right
of the join clause

SELECT r.sid, b.bid, b.name
FROM Reserves r RIGHT OUTER JOIN Boats b
ON r.bid = b.bid

Returns all boats & information on which ones
are reserved.

43

SELECT r.sid, b.bid, b.name

FROM Reserves r RIGHT OUTER JOIN Boats b

ON r.bid = b.bid

r.sid b.bid b.name
22 101 Interlake

null 102 Interlake
95 103 Clipper

null 104 Marine

sid bid day
22 101 10/10/96
95 103 11/12/96

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

44

Full Outer Join

Full Outer Join returns all (matched or unmatched) rows
from the tables on both sides of the join clause

SELECT r.sid, b.bid, b.name
FROM Sailors s FULL OUTER JOIN Boats b
ON s.sname = b.bname

45

SELECT s.sid, s.sname, b.bid, b.name

FROM Sailors s FULL OUTER JOIN Boats b

ON s.sname = b.bname

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

sid sname bid bname
22 Dustin null null

31 Lubber 105 Lubber

95 Bob null null

null null 101 Interlake

bid bname color
101 Interlake blue

105 Lubber purple

46

Aggregate Functions
Significant extension of relational algebra

COUNT (*) The number of rows in the relation

COUNT ([DISTINCT] A) The number of (unique) values in the A
column

SUM ([DISTINCT] A) The sum of all (unique) values in the A
column

AVG ([DISTINCT] A) The average of all (unique) values in the A
column

MAX (A) The maximum value in the A column

MIN (A) The minimum value in the A column

Aggregate Operators

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Count the
number of

sailors

Find the average age
of sailors with a

rating of 10
Find the average of the
distinct ages of sailors

with a rating of 10
Count the number of
distinct ratings of
sailors called “Bob”

Find the names of
sailors with the
highest rating

Aggregate Operators

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Summary Aggregate Functions…

50

Avg()
Count()
First()
Last()
Max()
Min()
SQL
Sum()
Group By
Having
Ucase()

Lcase()
Mid()
Len()
Round()
Now()
Format()

SELECT column_name,
aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING
aggregate_function(column_name)
operator value

Restriction on SELECT Lists With

Aggregation

• If any aggregation is used, then each
element of the SELECT list must be either:

1. Aggregated, or

2. An attribute on the GROUP BY list.

51

Illegal Query Example

• You might think you could find the bar that
sells Bud the cheapest by:

SELECT bar, MIN(price)
FROM Sells
WHERE beer = ’Bud’;

• But this query is illegal in SQL.
• Why?

52

SELECT S.sname, MAX (S.age)
FROM Sailors S

Find name and age of the oldest
sailor(s)

Only aggregate
operations allowed

NO !

Find name and age of the oldest sailor(s)

• The first query is
incorrect!

• Third query equivalent
to second query
– allowed in SQL/92

standard, but not

supported in some

systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age 54

GROUP BY and HAVING (1)

• So far, we’ve applied aggregate operators to all (qualifying)
tuples.

• Sometimes, we want to apply them to each of several groups
of tuples.

RelationQualifierAggregator32

Relation
Group 1Aggregator32

Group 2

Group 3

Aggregator

Aggregator

32

32
55

GROUP BY and HAVING (2)

Consider: Find the age of the youngest sailor for
each rating level. /* Min(age) for multiple groups

– If we know that rating values go from 1 to 10, we can
write 10 queries that look like this:

– In general, we don’t know how many rating levels
exist, and what the rating values for these levels are !

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

56

Queries With GROUP BY and
HAVING

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

SELECT
FROM

WHERE

Grouping

Grouping

Grouping

Qualifier
selecting
groups

Aggregator32

43 Aggregator

GROUP BYHAVING

MIN(Attribute)

Output
a table

57

Queries With GROUP BY

The target-list contains
(i) list of column names &

(ii) terms with aggregate operations (e.g., MIN
(S.age)).
– column name list (i) can contain only

attributes from the grouping-list.

SELECT [DISTINCT] target-list
FROM relation-list
[WHERE qualification]
GROUP BY grouping-list

• To generate values for a column based on groups
of rows, use aggregate functions in SELECT
statements with the GROUP BY clause

58

Group By Examples

SELECT S.rating, AVG (S.age)
FROM Sailors S
GROUP BY S.rating

For each rating, find the average age of the sailors

For each rating find the age of the youngest

sailor with age ³ 18

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating

59

Conceptual
Evaluation

1. The cross-product of relation-list is computed

2. Tuples that fail qualification are discarded

3. `Unnecessary’ fields are deleted

4. The remaining tuples are partitioned into groups by the
value of attributes in grouping-list.

5. The group-qualification is then applied to eliminate some
groups

6. One answer tuple is generated per qualifying group

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

60

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

Find the age of the youngest sailor with age ≥ 18, for
each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

Input relation

Disqualify

Only S.rating and S.age are
mentioned in SELECT

4 rating
groups

rating
7 35.0

age Answer

Only one
group

satisfies
HAVING

Find the age of the youngest
sailor with age ≥ 18

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Find the age of the youngest
sailor with age ≥ 18, for
each rating

Find the age of the youngest
sailor with age ≥ 18, for each
rating with at least 2 such
sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating

SELECT MIN (S.age)
FROM Sailors S
WHERE S.age >= 18

“GROUP BY and HAVING” Examples

For each red boat, find the number
of reservations for this boat

SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

1) Find all reservations
for red boats

2) Group the reservations
for red boats according to
bid

3) Count the number of
reservations for
each red-boat group

63

For each red boat, find the number
of reservations for this boat

Grouping over a join of two relations

SELECT B.bid, COUNT (*) AS scount
FROM Boats B, Reserves R
WHERE R.bid=B.bid
GROUP BY B.bid
HAVING B.color=‘red’

B.color is not
in the

grouping-list

Note: HAVING clause is to select groups !
64

Find the age of the youngest sailor older than 18,
for each rating level that has at least 2 sailors

Ø Shows HAVING clause can also contain a subquery.
Ø We can use S.rating inside the nested subquery because it has a

single value for the current group of sailors.
Ø What if HAVING clause is replaced by “HAVING COUNT(*) >1”

– Find the age of the youngest sailor older than 18, for each rating level that
has at least two such sailors. /* see next page

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 ˂ (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating)

Replacing this by
“HAVING COUNT(*) > 1”

65

Find the age of the youngest sailor older than 18,

for each rating level that has at least 2 sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 ˂ (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating)

Counting including
sailors younger

than 18

At least
2 sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING COUNT (*) › 1

Counting
include only
adult sailors

At least 2 such sailors,
i.e., older than 18

“age” is not
mentioned in
this subquery

66

Find those ratings for which the average age
is the minimum over all ratings

SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age))

FROM Sailors S2)

Aggregate
operations cannot

be nested

67

Find those ratings for which the average age
is the minimum over all ratings

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

Correct solution (in SQL/92):

Minimum over
all ratings

Find average age for
each rating group.

This table has
two columns

Average age for some
rating group

Output this rating group
and its average age

68

Null Values

• Field values in a tuple are sometimes

– unknown (e.g., a rating has not been assigned),
or

– inapplicable (e.g., no spouse’s name).

• SQL provides a special value null for
such situations.

69

Null Values
The presence of null complicates many issues:

• Special operators needed, e.g., IS NULL to test if a value is null.

• Is rating>8 true or false when rating is equal to null? null

• What about AND, OR and NOT ? Need a 3-valued logic (true,
false, and unknown), e.g., (unknown OR false) = unknown.

• Meaning of constructs must be defined carefully, e.g., WHERE
clause eliminates rows that don’t evaluate to true.

– Null + 5 = null; but SUM (null, 5) = 5. (nulls can cause some unexpected
behavior)

• New operators (in particular, outer joins) possible/needed.
70

Views

CREATE VIEW view_name
AS select_statement

Makes development simpler
Often used for security
Not instantiated - makes updates tricky

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

71

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

b.bid scount
102 1 Reds

72

Sailors who have reserved

all boats sid sname rating age
1 Frodo 7 22

2 Bilbo 2 39

3 Sam 8 27

Sailors

sid bid day
1 102 9/12

2 102 9/12

2 101 9/14

1 102 9/10

2 103 9/13

Reserves

bid bname color
101 Nina red

102 Pinta blue

103 Santa Maria red

Boats

SELECT S.name
FROM Sailors S, reserves R
WHERE S.sid = R.sid
GROUP BY S.name, S.sid
HAVING COUNT(DISTINCT R.bid) =

(Select COUNT (*) FROM Boats)

count
3

sname sid bid
Frodo 1 102

Bilbo 2 101

Bilbo 2 102

Frodo 1 102

Bilbo 2 103

sname sid bid
Frodo 1 102,102

Bilbo 2 101, 102, 103

sname sid count
Frodo 1 1

Bilbo 2 3

73

Two more important topics

• Constraints

• SQL embedded in other languages

74

Integrity Constraints

• IC conditions that every legal instance of a
relation must satisfy.
– Inserts/deletes/updates that violate ICs are disallowed.

– Can ensure application semantics (e.g., sid is a key),

– …or prevent inconsistencies (e.g., sname has to be a string,

age must be < 200)

• Types of IC’s: Domain constraints, primary
key constraints, foreign key constraints,
general constraints.
– Domain constraints: Field values must be of right type.

Always enforced.

– Primary key and foreign key constraints: coming right up.
75

Where do ICs Come From?

• Semantics of the real world!
• Note:

– We can check IC violation in a DB instance

– We can NEVER infer that an IC is true by looking

at an instance.

• An IC is a statement about all possible instances!

– From example, we know name is not a key, but

the assertion that sid is a key is given to us.

• Key and foreign key ICs are the most common
• More general ICs supported too.

76

Keys

• Keys are a way to associate tuples in different
relations

• Keys are one form of IC

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled Students

PRIMARY KeyFOREIGN Key 77

Primary Keys

• A set of fields is a superkey if:
– No two distinct tuples can have same values in all key fields

• A set of fields is a key for a relation if :
– It is a superkey

– No subset of the fields is a superkey

• what if >1 key for a relation?
– One of the keys is chosen (by DBA) to be the primary key.

Other keys are called candidate keys.

• E.g.
– sid is a key for Students.

– What about name?

– The set {sid, gpa} is a superkey. 78

• Possibly many candidate keys (specified
using UNIQUE), one of which is chosen as the
primary key.

• Keys must be used carefully!

CREATE TABLE Enrolled1
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled2
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

“For a given student and course, there is a single grade.”

Primary and Candidate Keys

79

CREATE TABLE Enrolled1
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled2
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

vs.

INSERT INTO enrolled1 VALUES ('1234', 'cs186', 'A+');
INSERT INTO enrolled1 VALUES ('1234', 'cs186', 'F');
INSERT INTO enrolled1 VALUES ('1234', 'cs61C', 'A+');

INSERT INTO enrolled2 VALUES ('1234', 'cs186', 'A+');
INSERT INTO enrolled2 VALUES ('1234', 'cs186', 'F');
INSERT INTO enrolled2 VALUES ('1234', 'cs61C', 'A+');
INSERT INTO enrolled2 VALUES ('4567', 'cs186', 'A+');

“For a given student and course, there is a single grade.”

Primary and Candidate Keys

80

“Students can take only one course, and no two students

in a course receive the same grade.”

CREATE TABLE Enrolled1
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid));

CREATE TABLE Enrolled2
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade));

vs.

INSERT INTO enrolled1 VALUES ('1234', 'cs186', 'A+');
INSERT INTO enrolled1 VALUES ('1234', 'cs186', 'F');
INSERT INTO enrolled1 VALUES ('1234', 'cs61C', 'A+');

INSERT INTO enrolled2 VALUES ('1234', 'cs186', 'A+');
INSERT INTO enrolled2 VALUES ('1234', 'cs186', 'F');
INSERT INTO enrolled2 VALUES ('1234', 'cs61C', 'A+');
INSERT INTO enrolled2 VALUES ('4567', 'cs186', 'A+');

Primary and Candidate Keys

81

Foreign Keys, Referential Integrity

• Foreign key: a “logical pointer”
– Set of fields in a tuple in one relation

that `refer’ to a tuple in another relation.

– Reference to primary key of the other relation.

• All foreign key constraints enforced?
– referential integrity!

– i.e., no dangling references.

82

Foreign Keys in SQL

• E.g. Only students listed in the Students relation
should be allowed to enroll for courses.
– sid is a foreign key referring to Students:

CREATE TABLE Enrolled
(sid CHAR(20),cid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students);

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students

11111 English102 A 83

Enforcing Referential Integrity

• sid in Enrolled: foreign key referencing
Students.

• Scenarios:
– Insert Enrolled tuple with non-existent student id?

– Delete a Students tuple?

• Also delete Enrolled tuples that refer to it? (CASCADE)

• Disallow if referred to? (NO ACTION)

• Set sid in referring Enrolled tups to a default value? (SET DEFAULT)

• Set sid in referring Enrolled tuples to null, denoting `unknown’ or

`inapplicable’. (SET NULL)

• Similar issues arise if primary key of Students
tuple is updated. 84

General

Constraints

• Useful when
more general ICs
than keys are
involved.

• Can use queries
to express
constraint.

• Checked on insert
or update.

• Constraints can
be named.

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10))

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK ('Interlake' <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

85

Constraints Over Multiple

Relations

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM

Boats B) < 100)

Number of boats
plus number of
sailors is < 100

86

Constraints Over Multiple

Relations

• Awkward and wrong!

– Only checks sailors!

• ASSERTION is the right

solution; not

associated with either

table.

– Unfortunately, not
supported in many
DBMS.

– Triggers are another
solution.

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM

Boats B) < 100)

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid)
FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

87

Two more important topics

• Constraints

• SQL embedded in other languages

88

Writing Applications with SQL

• SQL is not a general purpose programming
language.
– + Tailored for data retrieval and manipulation

– + Relatively easy to optimize and parallelize

– Can’t write entire apps in SQL alone

• Options:
– Make the query language “Turing complete”

• Avoids the “impedance mismatch”

• makes “simple” relational language complex

– Allow SQL to be embedded in regular programming languages.

– Q: What needs to be solved to make the latter approach work?

89

Cursors

• Can declare a cursor on a relation or query
• Can open a cursor
• Can repeatedly fetch a tuple (moving the cursor)
• Special return value when all tuples have been

retrieved.
• ORDER BY allows control over the order tuples are

returned.
• Fields in ORDER BY clause must also appear in SELECT clause.

• LIMIT controls the number of rows returned (good fit
w/ORDER BY)

• Can also modify/delete tuple pointed to by a cursor
– A “non-relational” way to get a handle to a particular tuple

90

Database APIs

• A library with database calls (API)
– special objects/methods

– passes SQL strings from language, presents result sets in a

language-friendly way

– ODBC a C/C++ standard started on Windows

– JDBC a Java equivalent

– Most scripting languages have similar things

• E.g. in Ruby there’s the “pg” gem for Postgres

• ODBC/JCDB try to be DBMS-neutral
– at least try to hide distinctions across different DBMSs

91

Summary

• Relational model has well-defined query

semantics

• SQL provides functionality close to basic

relational model

(some differences in duplicate handling, null values, set

operators, …)

• Typically, many ways to write a query

– DBMS figures out a fast way to execute a query,

regardless of how it is written.

92

ADVANCED EXAMPLES

93

Getting Serious

• Two “fancy” queries for different applications
– Clustering Coefficient for Social Network graphs

– Medians for “robust” estimates of the central

value

94

Serious SQL: Social Nets Example

-- An undirected friend graph. Store each link once

CREATE TABLE Friends(
fromID integer,
toID integer,
since date,
PRIMARY KEY (fromID, toID),
FOREIGN KEY (fromID) REFERENCES Users,
FOREIGN KEY (toID) REFERENCES Users,
CHECK (fromID < toID));

-- Return both directions

CREATE VIEW BothFriends AS
SELECT * FROM Friends
UNION ALL
SELECT F.toID AS fromID, F.fromID AS toID, F.since
FROM Friends F; 95

6 degrees of friends

SELECT F1.fromID, F5.toID

FROM BothFriends F1, BothFriends F2, BothFriends F3,

BothFriends F4, BothFriends F5

WHERE F1.toID = F2.fromID

AND F2.toID = F3.fromID

AND F3.toID = F4.fromID

AND F4.toID = F5.fromID;

96

Clustering Coefficient of a Node

Ci = 2|{ejk}| / ki(ki-1)
• where:

– ki is the number of neighbors of node I

– ejk is an edge between nodes j and k neighbors of

i, (j < k). (A triangle!)

• I.e. Cliquishness: the fraction of your friends that are

friends with each other!

• Clustering Coefficient of a graph is the average CC of

all nodes.

97

In SQL

Ci = 2|{ejk}| / ki(ki-1)

CREATE VIEW NEIGHBOR_CNT AS

SELECT fromID AS nodeID, count(*) AS friend_cnt

FROM BothFriends

GROUP BY nodeID;

CREATE VIEW TRIANGLES AS

SELECT F1.toID as root, F1.fromID AS friend1,

F2.fromID AS friend2

FROM BothFriends F1, BothFriends F2, Friends F3

WHERE F1.toID = F2.toID /* Both point to root */

AND F1.fromID = F3.fromID /* Same origin as F1 */

AND F3.toID = F2.fromID /* points to origin of F2 */

;

F1 F2

F3

98

In SQL

Ci = 2|{ejk}| / ki(ki-1)

CREATE VIEW NEIGHBOR_EDGE_CNT AS

SELECT root, COUNT(*) as cnt FROM TRIANGLES

GROUP BY root;

CREATE VIEW CC_PER_NODE AS

SELECT NE.root, 2.0*NE.cnt /

(N.friend_cnt*(N.friend_cnt–1)) AS CC

FROM NEIGHBOR_EDGE_CNT NE, NEIGHBOR_CNT N

WHERE NE.root = N.nodeID;

SELECT AVG(cc) FROM CC_PER_NODE;

F1 F2

F3

99

Median

• Given n values in sorted order, the one at position n/2
– Assumes an odd # of items

– For an even #, can take the lower of the middle 2

• A much more “robust” statistic than average
– Q: Suppose you want the mean to be 1,000,000. What

fraction of values do you have to corrupt?

– Q2: Suppose you want the median to be 1,000,000. Same

question.

– This is called the breakdown point of a statistic.

– Important for dealing with data outliers

• E.g. dirty data

• Even with real data: “overfitting” 100

Median in SQL

SELECT c AS median FROM T

WHERE

(SELECT COUNT(*) from T AS T1

WHERE T1.c < T.c)

=

(SELECT COUNT(*) from T AS T2

WHERE T2.c > T.c);

101

Median in SQL

SELECT c AS median FROM T

WHERE

(SELECT COUNT(*) from T AS T1

WHERE T1.c < T.c)

=

(SELECT COUNT(*) from T AS T2

WHERE T2.c > T.c);

102

Faster Median in SQL

SELECT x.c as median

FROM T x, T y

GROUP BY x.c

HAVING

SUM(CASE WHEN y.c <= x.c THEN 1 ELSE 0 END)
>= (COUNT(*)+1)/2

AND

SUM(CASE WHEN y.c >= x.c THEN 1 ELSE 0 END)
>= (COUNT(*)/2)+1

Why faster?
Note: handles even # of items! 103

EXAMPLES

Essential SQL Statements

105

CREATE DATABASE database_name

CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
...
)

CREATE INDEX index_name
ON table_name (column_name)

CREATE UNIQUE INDEX index_name
ON table_name (column_name)

DELETE FROM table_name
WHERE some_column=some_value

DROP INDEX index_name

DROP TABLE table_name

DELETE FROM table_name

DELETE * FROM table_name

INSERT INTO table_name
VALUES (value1, value2,....)

INSERT INTO table_name
(column1, column2,...)
VALUES (value1, value2,....)

DROP DATABASE database_name

More SQL Statements

106

SELECT column_name(s)
FROM table_name
WHERE condition
AND|OR condition

ALTER TABLE table_name
ADD column_name datatype

ALTER TABLE table_name
DROP COLUMN column_name

SELECT column_name AS column_alias
FROM table_name

SELECT column_name
FROM table_name AS table_alias

SELECT column_name(s)
FROM table_name
WHERE column_name
BETWEEN value1 AND value2

Other SQL Statements

• AUTO INCREMENT Field
• SELECT INTO

– Selects data from one table and inserts it into a new table

• LIMIT
– Specify the number of records to return

• CREATE VIEW
– Create a virtual table based on the result-set of an SQL

statement

• TRUNCATE TABLE
– Delete all table contents

107

CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

SELECT column_name(s)
INTO newtable [IN
externaldb]
FROM table1;

SELECT column_name(s)
FROM table_name
LIMIT number;

Example: Relation (Table)

name birth gpa grad

Anderson 1987-10-22 3.9 2009

Jones 1990-4-16 2.4 2012

Hernandez 1989-8-12 3.1 2011

Chen 1990-2-4 3.2 2011

VARCHAR(30) DATE FLOAT INT

Column/Attribute/FieldRow/Tuple/Record

Column Types

108

Example: Primary Key

id name birth gpa grad

14 Anderson 1987-10-22 3.9 2009

38 Jones 1990-4-16 2.4 2012

77 Hernandez 1989-8-12 3.1 2011

104 Chen 1990-2-4 3.2 2011

INT VARCHAR(30) DATE FLOAT INT

Unique For Each Row

109

Basic Table Operations

CREATE TABLE students (
id INT AUTO_INCREMENT,

name VARCHAR(30),
birth DATE,
gpa FLOAT,

grad INT,
PRIMARY KEY(id));

INSERT INTO students(name, birth, gpa, grad)
VALUES ('Anderson', '1987-10-22', 3.9, 2009);

INSERT INTO students(name, birth, gpa, grad)

VALUES ('Jones', '1990-4-16', 2.4, 2012);

DELETE FROM students WHERE name='Anderson';

DROP TABLE students;

110

Query: Display Entire Table

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-4-16 2.4 2012

3 Hernandez 1989-8-12 3.1 2011

4 Chen 1990-2-4 3.2 2011

+----+-----------+------------+------+------+
| id | name | birth | gpa | grad |
+----+-----------+------------+------+------+
1	Anderson	1987-10-22	3.9	2009
2	Jones	1990-04-16	2.4	2012
3	Hernandez	1989-08-12	3.1	2011
4	Chen	1990-02-04	3.2	2011
+----+-----------+------------+------+------+

SELECT * FROM students;

111

Query: Select Columns name and gpa

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-4-16 2.4 2012

3 Hernandez 1989-8-12 3.1 2011

4 Chen 1990-2-4 3.2 2011

+-----------+------+
| name | gpa |
+-----------+------+
Anderson	3.9
Jones	2.4
Hernandez	3.1
Chen	3.2
+-----------+------+

SELECT name, gpa
FROM students;

112

Query: Filter Rows

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-4-16 2.4 2012

3 Hernandez 1989-8-12 3.1 2011

4 Chen 1990-2-4 3.2 2011

+-----------+------+
| name | gpa |
+-----------+------+
Anderson	3.9
Hernandez	3.1
Chen	3.2
+-----------+------+

SELECT name, gpa FROM students
WHERE gpa > 3.0;

113

Query: Sort Output

• The ORDER BY keyword is used to sort the
result-set by one or more columns

114

SELECT column_name, column_name
FROM table_name
ORDER BY column_name ASC|DESC, column_name ASC|DESC;

Query: Sort Output by gpa

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-4-16 2.4 2012

3 Hernandez 1989-8-12 3.1 2011

4 Chen 1990-2-4 3.2 2011

+------+-----------+------+
| gpa | name | grad |
+------+-----------+------+
3.9	Anderson	2009
3.2	Chen	2011
3.1	Hernandez	2011
+------+-----------+------+

SELECT gpa, name, grad FROM students
WHERE gpa > 3.0
ORDER BY gpa DESC;

115

Update Value(s)

• The UPDATE statement is used to update
existing records in a table.

116

UPDATE table_name
SET column1=value1,column2=value2,...
WHERE some_column=some_value;

Update Value(s)

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-4-16 2.4 2012

3 Hernandez 1989-8-12 3.1 2011

4 Chen 1990-2-4 3.2 2011

UPDATE students
SET gpa = 2.6, grad = 2013
WHERE id = 2

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-4-16 2.6 2013

3 Hernandez 1989-8-12 3.1 2011

4 Chen 1990-2-4 3.2 2011
117

s.id s.name s.birth s.gpa s.grad s.advisor_id p.id p.name p.title

1 Anderson 1987-10-22 3.9 2009 2 1 Fujimura assocprof

1 Anderson 1987-10-22 3.9 2009 2 2 Bolosky prof

2 Jones 1990-4-16 2.4 2012 1 1 Fujimura assocprof

2 Jones 1990-4-16 2.4 2012 1 2 Bolosky prof

3 Hernandez 1989-8-12 3.1 2011 1 1 Fujimura assocprof

3 Hernandez 1989-8-12 3.1 2011 1 2 Bolosky prof

4 Chen 1990-2-4 3.2 2011 1 1 Fujimura assocprof

4 Chen 1990-2-4 3.2 2011 1 2 Bolosky prof

id name birth gpa grad advisor_id

1 Anderson 1987-10-22 3.9 2009 2

2 Jones 1990-4-16 2.4 2012 1

3 Hernandez 1989-8-12 3.1 2011 1

4 Chen 1990-2-4 3.2 2011 1

Foreign Key

SELECT s.name, s.gpa
FROM students s, advisors p
WHERE s.advisor_id = p.id AND p.name = 'Fujimura';

st
ud

en
ts

ad
vi

so
rs

id name title

1 Fujimura assocprof

2 Bolosky prof

Slide 118

s.id s.name s.birth s.gpa s.grad s.advisor_id p.id p.name p.title

1 Anderson 1987-10-22 3.9 2009 2 1 Fujimura assocprof

1 Anderson 1987-10-22 3.9 2009 2 2 Bolosky prof

2 Jones 1990-4-16 2.4 2012 1 1 Fujimura assocprof

2 Jones 1990-4-16 2.4 2012 1 2 Bolosky prof

3 Hernandez 1989-8-12 3.1 2011 1 1 Fujimura assocprof

3 Hernandez 1989-8-12 3.1 2011 1 2 Bolosky prof

4 Chen 1990-2-4 3.2 2011 1 1 Fujimura assocprof

4 Chen 1990-2-4 3.2 2011 1 2 Bolosky prof

id name title

1 Fujimura assocprof

2 Bolosky prof

id name birth gpa grad advisor_id

1 Anderson 1987-10-22 3.9 2009 2

2 Jones 1990-4-16 2.4 2012 1

3 Hernandez 1989-8-12 3.1 2011 1

4 Chen 1990-2-4 3.2 2011 1

SELECT s.name, s.gpa
FROM students s, advisors p
WHERE s.advisor_id = p.id AND p.name = 'Fujimura';

st
ud

en
ts

ad
vi

so
rs

Slide 119

SELECT s.name, s.gpa
FROM students s, advisors p
WHERE s.advisor_id = p.id AND p.name = 'Fujimura';

+-----------+------+
| name | gpa |
+-----------+------+
Jones	2.4
Hernandez	3.1
Chen	3.2
+-----------+------+

id name birth gpa grad advisor_id

1 Anderson 1987-10-22 3.9 2009 2

2 Jones 1990-4-16 2.4 2012 1

3 Hernandez 1989-8-12 3.1 2011 1

4 Chen 1990-2-4 3.2 2011 1

st
ud

en
ts

ad
vi

so
rs

id name title

1 Fujimura assocprof

2 Bolosky prof

Slide 120

id name birth gpa grad

1 Anderson 1987-10-22 3.9 2009

2 Jones 1990-4-16 2.4 2012

3 Hernandez 1989-8-12 3.1 2011

4 Chen 1990-2-4 3.2 2011

id number name quarter

1 CS142 Web stuff Winter 2009

2 ART101 Finger painting Fall 2008

3 ART101 Finger painting Winter 2009

4 PE204 Mud wrestling Winter 2009

course_id student_id

1 1

3 1

4 1

1 2

2 2

1 3

2 4

4 4

st
ud

en
ts

co
ur

se
s co

ur
se

s_
st

ud
en

ts

+----------+-------------+
| name | quarter |
+----------+-------------+
Jones	Fall 2008
Chen	Fall 2008
Anderson	Winter 2009
+----------+-------------+

SELECT s.name, c.quarter
FROM students s, courses c, courses_students cs
WHERE c.id = cs.course_id AND s.id = cs.student_id
AND c.number = 'ART101';

Slide 121

Back to Our Running Example …

CREATE TABLE Sailors (
sid INTEGER,
sname CHAR(20),
rating INTEGER,
age REAL,
PRIMARY KEY sid);

CREATE TABLE Boats (
bid INTEGER,
bname CHAR (20),
color CHAR(10)
PRIMARY KEY bid);

CREATE TABLE Reserves (
sid INTEGER,
bid INTEGER,
day DATE,

PRIMARY KEY (sid, bid, day),
FOREIGN KEY sid REFERENCES Sailors,
FOREIGN KEY bid REFERENCES Boats);

sid sname rating age

1 Fred 7 22

2 Jim 2 39

3 Nancy 8 27

bid bname color

101 Nina red

102 Pinta blue

103 Santa Maria red

sid bid day
1 102 9/12

2 102 9/13

Back to Our Running Example …

Reserves
Sailors

Boats

sid bid day
22 101 10/10/96
95 103 11/12/96

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red 123

APPENDIX

124

DDL – Create Table

• CREATE TABLE table_name
({ column_name data_type
[DEFAULT default_expr] [

column_constraint [, ...]] |
table_constraint } [, ...])

• Data Types (PostgreSQL) include:

character(n) – fixed-length character string
character varying(n) – variable-length character string
smallint, integer, bigint, numeric, real, double precision
date, time, timestamp, …
serial - unique ID for indexing and cross reference
…

• PostgreSQL also allows OIDs and other “system types”,
arrays, inheritance, rules…

conformance to the SQL-1999 standard is variable. 125

Constraints

• Recall that the schema defines the legal
instances of the relations.

• Data types are a way to limit the kind of data
that can be stored in a table, but they are
often insufficient.

– e.g., prices must be positive values

– uniqueness, referential integrity, etc.

• Can specify constraints on individual columns
or on tables.

126

Column constraints

[CONSTRAINT constraint_name]

{ NOT NULL | NULL | UNIQUE | PRIMARY KEY |

CHECK (expression) |

REFERENCES reftable [(refcolumn)] [ON

DELETE action] [ON UPDATE action] }

primary key = unique + not null; also used as
default target for references. (can have at most 1)

expression must produce a boolean result and

reference that column’s value only.

references is for foreign keys; action is one of:

NO ACTION, CASCADE, SET NULL, SET

DEFAULT
127

Table constraints

• CREATE TABLE table_name
({ column_name data_type [DEFAULT

default_expr] [column_constraint [, ...]] |

table_constraint } [, ...])

Table Constraints:

• [CONSTRAINT constraint_name]

{ UNIQUE (column_name [, ...]) |

PRIMARY KEY (column_name [, ...]) |

CHECK (expression) |

FOREIGN KEY (column_name [, ...])

REFERENCES reftable [(refcolumn [, ...])] [ON

DELETE action] [ON UPDATE action] }
128

Create Table (Examples)
CREATE TABLE films (

code CHAR(5) PRIMARY KEY,

title VARCHAR(40),

did DECIMAL(3),

date_prod DATE,

kind VARCHAR(10),

CONSTRAINT production UNIQUE(date_prod)

FOREIGN KEY did REFERENCES distributors

ON DELETE NO ACTION

);

CREATE TABLE distributors (

did DECIMAL(3) PRIMARY KEY,

name VARCHAR(40)

CONSTRAINT con1 CHECK (did > 100 AND name <> ‘ ’)

);
129

Other DDL Statements

• Alter Table
– use to add/remove columns, constraints, rename

things …

• Drop Table
– Compare to “Delete * From Table”

• Create/Drop View
• Create/Drop Index
• Grant/Revoke privileges

– SQL has an authorization model for saying who

can read/modify/delete etc. data and who can

grant and revoke privileges! 130

