Relational Query Languages

Relational Algebra » Query languages: Allow manipulation and retrieval of

data from a database.
Fall 2016, Lecture 5 « Relational model supports simple, powerful QLs:
— Strong formal foundation based on logic.
— Allows for much optimization.

By relieving the brain of all unnecessary
work, a good notation sets it free to
concentrate on more advanced problems,
and, in effect, increases the mental power of
the race.

-- Alfred North Whitehead (1861 — 1947)

¢ Query Languages = programming languages!
— QLs not expected to be “Turing complete”.
— QLs not intended to be used for complex calculations.
— QLs support easy, efficient access to large data sets.

Formal Relational Query Languages Preliminaries
Two mathematical Query Languages form the « A query is applied to relation instances, and the
basis for “real” languages (e.g. SQL), and for result of a query is also a relation instance.
implementation:

— Schemas of input relations for a query are fixed (but
query will run over any legal instance)

Relational Algebra: Mpre operational, very — The schema for the result of a given query is fixed.
useful for representing execution plans. o It is determined by the definitions of the query
language constructs.

Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-procedural, declarative.)

¢ Positional vs. named-field notation:

— Positional notation easier for formal definitions,
named-field notation more readable.

w Understanding Algebra (and Calculus) is key to _
— Both used in SQL

understanding SQL, query processing!

Relational Algebra: 5 Basic Operations

Selection (o) Selects a subset of rows from
relation (horizontal).

Projection (;r') Retains only wanted columns

from relation (vertical).

Cross-product (X) Allows us to combine two

relations.

Set-difference (=) Tuplesin rl, but not in r2.

Union (\J) Tuplesin rl and/or in r2.

Since each operation returns a relation, operations can
be composed! (Algebra is “closed”.)

Selection (0) — Horizontal Restriction

e Selects rows that satisfy selection condition.

e Result is a relation.

Schema of result is same as that of the input relation.

sid

Sname

rating

age

28
58

yuppy
rusty

9
10

35.0
35.0

sid |sname |rating |age

28 |yuppy 9 35.0

31 |lubber | 8 55.5

44 |guppy | 5 35.0

58 |rusty 10 |35.0
(52)

rating>8

(52)

Select all rows where the
rating is larger than 8

Example Instancesk?

bid |bname

color

101 |Interlake
102 |Interlake
103 | Clipper
104 |Marine

blue
red

green
red

Boats

51

52

sid |bid | day

22 1101 |10/10/96

58 [103 |[11/12/96
sid |sname |rating |age
22 |dustin 7 45.0
31 |lubber | 8 55.5
58 |rusty 10 |35.0
sid |sname |rating |age
28 |yuppy 9 35.0
31 |lubber | 8 55.5
44 |guppy 5 35.0
58 |rusty 10 [35.0

Projection — Vertical Restriction

. S2) - 2
e Examples:),)

e Retains only attributes that are in the " projection

list”.

e Schema of result:

— exactly the fields in the projection list, with the
same names that they had in the input relation.

» Projection operator has to eliminate duplicates
(How do they arise? Why remove them?)

— Note: real systems typically don’t do duplicate
elimination unless the user explicitly asks for it.
(Why not?)

Projection
sid |[sname |rating |age
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 | guppy 5 35.0
58 |rusty 10 [35.0
S2

sname |rating
yuppy |9
lubber |8
8Uppy |9
rusty |10

(S2

T .
sname,rating

age

35.0
55.5

T

age

Union and Set-Difference

(52)

 All of these operations take two input relations,
which must be union-compatible:

— Same number of fields.

— " Corresponding’ fields have the same type.

¢ For which, if any, is duplicate elimination

required?

)

Nesting Operators

¢ Result of a Relational Algebra Operator is a Relation, so...
e Can use as input to another Relational Algebra Operator

sid

sname |rating |age
z yufg)y 2 i_‘o sname rating
| ool I s yuppy |9
T sSUPPYy JJ JP VU 10
58 |rusty 10 [35.0 rusty
Sname,mting(arating>8(52))
Union
sid |sname |rating |age sid |sname |rating |age
22 |dustin | 7 |450 |22 |dustin |7 4.0
31 lubber | 8 555 31 |lubber |8 55.5
58 ¢ 10 1350 58 |rusty |10 35.0
sy =~ |44 |guppy |5 35.0
S1 28 |yuppy |9 35.0
sid |sname |rating |age S1u.S2
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy 5 35.0
58 |rusty 10 [35.0

S

2

Set Difference

. . sid [sname |rating |age
sid |sname |rating |age :
2 dustin | 7 |4s0 |22 [dustin |7 .0
31 |lubber | 8 55.5 S1-52
58 |rusty 10 |35.0
S1
sid |sname |rating |age sid |sname |rating |age
28 yuppy | 9 350 | |28 |yuppy | 9 [35.0
31 |lubber | 8 55.5 44 |guppy | 5 35.0
44 |guppy 5 35.0
58 |rusty | 10 |35.0 8281
S2
Cross Product Example
g1 |sid |sname |rating |age R1 |sid |bid day
22 |dustin 7 45.0 22 101 |10/10/96
31 |lubber | 8 55.5 58 103 |11/12/96
58 |rusty 10 {35.0
P (C(A—sidl,5—sid2),S1xRl)=
sid]l |sname |rating|age |sid2 |bid |day
22 |dustin | 7 |450 | 22 |101 |10/10/96
22 |dustin 7 |450 | 58 [103 [11/12/96
31 |lubber | 8 [555 | 22 [101 [10/10/96
31 |lubber | 8 [555 | 58 [103 |11/12/96
58 |rust 10 (350 | 22 |101 |10/10/96
58 |rust 10 [35.0 | 58 [103 [11/12/96

Cross-Product

e S1 x R1: Each row of S1 paired with each row of R1.
Q: How many rows in the result?

e Result schema has one field per field of S1 and R1,
with field names " inherited’ if possible.

— May have a naming conflict. Both S1 and R1 have
a field with the same name.

— In this case, can use the renaming operator:

0 (C(1—> sidl,5—>sid2), S1x R)

Compound Operator: Intersection

¢ In addition to the 5 basic operators, there are
several additional "Compound Operators”

— These add no computational power to the
language, but are useful shorthands.

— Can be expressed solely with the basic ops.

Intersection takes two input relations, which
must be union-compatible.

¢ Q: How to express it using basic operators?
RNnS=R -(R-5)

Intersection

sid |sname |rating |age

22 |dustin 7 45.0

31 |lubber | 8 555 sid [sname |rating |age
58 |rusty 10 |35.0 31 |lubber |8 55.5
S1 58 |rusty |10 35.0
sid |sname |rating |age
28 |yuppy | 9 350 STMS2
31 |lubber | 8 55.5
44 |guppy | 5 35.0
58 |rusty 10 [35.0
S2
Natural Join Example
sid [sname |rating |age
i |lzd | day 22 |dustin | 7 |45.0
22 101 [10/10/96 31 |lubber | 8 555
58 103 |11/12/96 58 |rusty 10 1350
R1 S1
R1><S1 =

sid |sname |rating |age |bid |day

22 dustin |7 45.0 (101 (10/10/96
58 rusty (10 35.0 |103 |11/12/96

Compound Operator: Join (<)

Joins are compound operators involving cross product,
selection, and (sometimes) projection.

Most common type of join is a “natural join” (often just
called “join”). RI><]S conceptually is:
— Compute RX S

— Select rows where attributes that appear in both relations have
equal values

— Project all unique attributes and one copy of each of the
common ones.

Note: Usually done much more efficiently than this.
Useful for putting “normalized” relations back together.

Other Types of Joins

Condition Join (or "theta-join”):
R .S =0 . (RXS)

Result schema same as that of cross-product.
May have fewer tuples than cross-product.

Equi-Join: Special case: condition c contains
only conjunction of equalities.

“Theta” Join Example

sid [sname |rating |age

sid [bid | day
22 [101 [10/10/96 22 |dustin | 7 [45.0
58 (103 [11/12/96 31 |lubber | 8 |55.5
58 |rusty | 10 {35.0
R1 o1
S1 < Rl =

S1.sid<Rl sid

(sid) |sname |rating |age [(sid) |bid |day

22 |dustin |7 450 [58 [103 [11/12/96
31 |lubber |8 555 (58 |103 [11/12/96
Division

¢ Not supported as a primitive operator, but useful for
expressing queries like:

Find sailors who have reserved all boats.

¢ Precondition: in A/B, the attributes in B must be
included in the schema for A. Also, the result has
attributes A-B.

— SALES(supld, prodId);
— PRODUCTS(prodId);

— Relations SALES and PRODUCTS must be built using
projections.

— SALES/PRODUCTS: the ids of the suppliers supplying ALL
products.

Division

e Assume

— Relation R is defined over the attribute set A
— Relation S is defined over the attribute set B
Such that B < A (B is asubsetof A)
letC=A-B

Division is defined as follows:

— A relation over the attributes C that consists of the set
of tuples from R that match the combination of every
tuple in S.

In other words, the result of RS consists of the
restrictions of tuples in R to the attribute names unique to

R, i.e., in the header of R but not in the header of S, for

which it holds that all their combinations with tuples in S
are present in R

Formally...

e A/B:
Let A have 2 fields, x and y; B have only field y:

A/B contains all x tuples such that for every y tuple

in B, there is an xy tuple in A.]

A/B= {<x>“v’<y> e B(E|<x,y> e A)}

e Why is this called division?
— Answer: For all relations Sand Rit holds S = (S x R)/R

More Examples of Division A/B

sno |pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 |p1
s2 |p2
s3 |p2
s4 |p2
s4 |p4
A

pno

p2

B1

SNno

sl
s4

A/B2

sno

sl
A/B3

Note: For relation instances A and B, A/B is the largest
relation instance Q such that BxQ c A

Examples

Boats

Reserves id o dicy
22 101 |10/10/96
58 [103 |11/12/96
sid [sname |rating |age
Sailors |22 |dustin 7 45.0
31 |lubber | 8 55.5
58 |rusty 10 |35.0
bid | bname |color
101 |Interlake |Blue
102 |Interlake |Red
103 |Clipper |Green
104 |Marine |Red

Expressing A/B Using Basic Operators

« Division is not essential op; just a useful shorthand.

— (Also true of joins, but joins are so common that systems
implement joins specially.)
o Idea: For A/B, compute all x values that are not
“disqualified’ by some y value in B.
— xvalue is disqualified if by attaching y value from B, we
obtain an xy tuple that is not in A.

Disqualified x values: 7 (7 x(A)XB)_A)

A/B: T (A) — Disqualified x values

Find names of sailors who've reserved boat #103

e Solution1: 7 Reserves) <t Sailors)

sname((% i _103

« Solution 2: 7 (Reserves>< Sailors))

sname'® pig 103

sid |sname |rating |age sid |bid day
22 |dustin 7 45.0 22 1101 110/10/96
31 |lubber 8 55.5 58 (103 [11/12/96
58 |rusty 10 1(35.0

Find names of sailors who've reserved a red boat

o Information about boat color only available in
Boats; so need an extra join:

a o Boats) <t Reservest<t Sailors
sname(color='red'))

sid |bid | day

. _ 22 1101 |10/10/96
+ A more efficient (???) solution: |53 103 [11/12/96

T (o

color're d,Boats)) ><1 Res)><t Sailors)

sname (”sid ((”bid

w A query optimizer can find this given the first solution!

sid |sname |rating |age bid |bname |color

22 |dustin 7 450 ﬁ Interlake |blue
31 |lubber | 8 555 102 |Interlake |red

103 |Clipper |green
58 |rusty 10 1350 104 |Marine |red

Find sailors who've reserved a red and a green boat

¢ Previous approach won’t work! Must identify
sailors who've reserved red boats, sailors who've
reserved green boats, then find the intersection
(note that sid is a key for Sailors):

p (Tempred, . d((a Boats)><t Reserves))

color=red'

o (Tempgreen, 7 d((a Boats)><t Reserves))

color= green'

7 cname(Tempred N Tempgreen)><t Sailors)

Find names of sailors who've reserved a red or a
green boat

e Can identify all red or green boats, then find
sailors who've reserved one of these boats:

p (Tempboats, (o Boats))

color="red' v color="green'

V4 (Tempboats<i Reserves><i Sailors)

sname .
bid |bname |color

sid [sname |rating |age ==
101 |Interlake |blue

22 |dustin | 7 1450 102 |Interlake |red
31 |lubber | 8 55.5 103 |Clipper |green
58 |rusty 10 |35.0 104 |Marine |red

sid |bid day
22 101 [10/10/96
58 (103 |11/12/96

Find the names of sailors who've reserved all boats

¢ Uses division; schemas of the input relations to
/ must be carefully chosen:

p (Tempsids, (Reserves) / (zr , . ,Boats))

sid,bid

T ename Lempsids > Sailors)

bid

« To find sailors who've reserved all ‘Interlake” boats:

..... | Boats)

bid (o bname=Interlaké

