
CSC 322: Computer Organization Lab

Lecture 02: Introduction to Programming with Python

2

Outline

• Programming languages and Python

• Basic programs and numeric data

• Control statements

• Text processing

3

Why Python?

4

Languages

• Some powerful ones:
– C

• Systems Programming
– FORTRAN

• science / engineering
– COBOL

• business data
– LISP

• logic and AI
– BASIC

• a simple language

5

Python

• Created in 1991 by Guido van Rossum (now at Google)
– Named for Monty Python

• Useful as a scripting language

– script: A program meant for use in small/medium projects

• Used by:
– Google, Yahoo!, Youtube
– Many Linux distributions
– Games and apps (e.g. Eve Online)

6

Installing Python

Windows:

• Download Python from
http://www.python.org

• Install Python.
• Run Idle from the Start Menu.

Mac OS X:

• Python is already installed.
• Open a terminal and run python

or run Idle from Finder.

Linux:

• Chances are you already have
Python installed. To check, run
python from the terminal.

• If not, install from your
distribution's package system.

7

Python 2 or Python 3?

Python 2.x is legacy, Python 3.x is the
present and future of the language

8

Interpreted Languages

• interpreted

– Not compiled like many other languages (Java, C, C++)
– Code is written and then directly executed by an interpreter

– Type commands into interpreter and see immediate results

ComputerRuntime
EnvironmentCompilerCodeJava:

ComputerInterpreterCodePython:

9

The Python Interpreter

• Allows you to type commands one-at-a-time and see results
• A great way to explore Python's syntax

Basic Programs and

Numeric Data

11

The print Statement

• A Python program's code is just written directly into a file
print “Hello, World!” // Python 2

print (”Hello, World!”) // Python 3

12

The print Statement

13

• Anything after a # is ignored by Python

Comments

swallows2.py

1
2
3
4
5
6

Suzy Student, CSE 142, Fall 2097
This program prints important messages.
print "Hello, world!"
print # blank line
print "Suppose two swallows \"carry\" it together."
print 'African or "European" swallows?'

14

• Python does not have a main() method like Java or C but every module has a
special attribute called __name__

• A good way to control the entry point to your program and write clean and
structured code is to conditionally execute a module:
if __name__ == "__main__":

main()

• Example

def main():
print(“Hello World”)

if __name__ == "__main__":
main()

An Equivalent to the Main() method

15

Expressions

• expression: A value or operation(s) to compute a value.
Example: 1 + 4 * 3

• Arithmetic operators:
– + - * / add, subtract/negate, multiply, divide
– ** exponentiate
– % modulus, a.k.a. remainder

• precedence: Order in which operations are computed.
– * / % ** have a higher precedence than + -
1 + 3 * 4 is 13
(1 + 3) * 4 is 16

16

Sentences or Lines

x = 2
x = x + 2
print(x)

Variable Operator Constant Function

Assignment statement
Assignment with expression
Print statement

17

Integer division

• When we divide integers with / , the quotient is an integer.
3 52

4) 14 27) 1425
12 135
2 75

54
21

• 35 / 5 is 7
• 84 / 10 is 8

• The % operator computes a remainder from integer division.
3 43

4) 14 5) 218
12 20
2 18

15
3

18

Variables

• A variable is a named place in the memory where a programmer can store data and
later retrieve the data using the variable “name”

• assignment: Stores a value into a variable.
– Syntax:

name = expression

– Examples:x = 5
gpa = 3.14

x 5 gpa 3.14

– A variable can be used in expressions.
x + 4 is 9

19

Exercise

• This program's code is redundant. Improve it with variables:

print ("Subtotal:")

print (38 + 40 + 30)
print ("Tax:")
print ((38 + 40 + 30) * .09)
print ("Tip:")

print ((38 + 40 + 30) * .15)
print ("Total:")
print (38 + 40 + 30 + (38 + 40 + 30) * .15 + (38 + 40 + 30) * .09)

20

Data Types

• type: A category or set of data values.
– Constrains the operations that can be performed on the data
– Examples: integer, real number, text string

• Python is relaxed about types.
– A variable's type does not need to be declared.
– A variable can change types as a program is running.

Value Python type

42 int

3.14 float

"nil" str

21

Parameters

• parameter: A value supplied to a command as you run it.
– Syntax:

command (value)

command (value, value, ..., value)

• Example:
import math // more about this one later!

print (math.sqrt(25))
print (math.sqrt(15 + 10 * 10 + 6))
x = 5
print (math.sqrt(x + sqrt(16)))

22

Parameters

• parameter: A value supplied to a command as you run it.
– Syntax:

command (value)

command (value, value, ..., value)

• Example:
from math import * // more about this one later!

print (sqrt(25))
print (sqrt(15 + 10 * 10 + 6))
x = 5
print (sqrt(x + sqrt(16)))

23

Math commands

• To use these commands, place this line atop your program:
from math import *

Function name Description

abs(value) absolute value
ceil(value) rounds up
cos(value) cosine, in radians
floor(value) rounds down
log10(value) logarithm, base 10
max(value1, value2) larger of two values
min(value1, value2) smaller of two values
round(value) nearest whole number
sin(value) sine, in radians
sqrt(value) square root

Constant Description

e 2.7182818...
pi 3.1415926...

24

• input : Reads a string from the user's keyboard.
– You can store the result of input into a variable.

– Example:
age = input("How old are you? ")
print ("Your age is", age)
print ("You have", 65 – int(age), "years until retirement”)

Output:
How old are you? 53
Your age is 53
You have 12 years until retirement

input

25

• If we want to read a number from the user, we must convert it from a string to a
number using a type conversion function

• Later we will deal with bad input data

Converting User Input

inp = input('Europe floor?')
usf = int(inp) + 1
print('US floor', usf)

26

• Similar to input in Python 3 => Reads a string of text from the user's keyboard.

– Example:
name = raw_input("Howdy. What's yer name? "). // Python 2
print name, "... what a silly name!"

Output:
Howdy. What's yer name? Paris Hilton
Paris Hilton ... what a silly name!

raw_input

Control Statements

28

• Boolean expressions ask a question and produce a Yes or No result which we use to
control program flow

• Boolean expressions using comparison operators evaluate to True / False or Yes / No
• Comparison operators look at variables but do not change the variables

Comparison Operators

29

• Increase indent indent after an if statement or for statement (after :)
• Maintain indent to indicate the scope of the block (which lines are affected by the

if/for)
• Reduce indent back to the level of the if statement or for statement to indicate the

end of the block
• Blank lines are ignored - they do not affect indentation
• Comments on a line by themselves are ignored with regard to indentation

Indentation

30

• Some editors automatically use spaces for files with ".py" extension (nice!)

• Most text editors can turn tabs into spaces
– Make sure to enable this feature

• Python cares a *lot* about how far a line is indented. If you mix tabs and spaces,
you may get “indentation errors” even if everything looks fine

Warning: Do Not Mix Tabs and spaces

31

x = 5
if x > 2 :

print('Bigger than 2')
print('Still bigger')

print('Done with 2')

for i in range(5) :
print(i)
if i > 2 :

print('Bigger than 2')
print('Done with i', i)

print('All Done')

increase / maintain after if or for

decrease to indicate end of block

32

• if statement: Executes a set of commands only if a certain condition is True.
Otherwise, the commands are skipped.
– Syntax:
if condition:

statements

– Example:
gpa = input("What is your GPA? ")
if gpa > 2.0:

print "Your application is accepted."

if

33

if/else
• if/else statement: Executes one set of statements if a certain condition is True,

and a second set if it is False.
– Syntax:
if condition:

statements

else:
statements

– Example:
gpa = input("What is your GPA? ")
if gpa > 2.0:

print "Welcome to Mars University!"
else:

print "Your application is denied."

• Multiple conditions can be chained with elif

34

Logic

– Logical expressions can be combined using logical operators:
Operator Example Result

and (9 != 6) and (2 < 3) True

or (2 == 3) or (-1 < 5) True

not not (7 > 0) False

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

35

• The in keyword can also be used to check to see if one string is “in” another string
• The in expression is a logical expression that returns True or False and can be used

in an if statement

Using in as a Logical Operator

>>> fruit = 'banana'
>>> 'n' in fruit
True
>>> 'm' in fruit
False
>>> 'nan' in fruit
True
>>> if 'a' in fruit :
... print('Found it!')
...
Found it!
>>>

36

>>> stuff = 'Hello world'
>>> type(stuff)
<class 'str'>
>>> dir(stuff)
['capitalize', 'casefold', 'center', 'count', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'format_map',
'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit',
'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace',
'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip',
'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust',
'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines',
'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper',
'zfill']

String Library

37

• We use the find() function to search for a
substring within another string

• find() finds the first occurrence of the
substring

• If the substring is not found, find() returns
-1

• Remember that string position starts at
zero

Searching a String

>>> fruit = 'banana'
>>> pos = fruit.find('na')
>>> print(pos)
2
>>> aa = fruit.find('z')
>>> print(aa)
-1

0
b

1
a

2
n

3
a

4
n

5
a

38

• Sometimes we want to take a string and
remove whitespace at the beginning
and/or end

• lstrip() and rstrip() remove whitespace at
the left or right

• strip() removes both beginning and
ending whitespace

Stripping Whitespace

>>> greet = ' Hello Bob '
>>> greet.lstrip()
'Hello Bob '
>>> greet.rstrip()
' Hello Bob'
>>> greet.strip()
'Hello Bob'
>>>

39

>>> line = 'Please have a nice day'
>>> line.startswith('Please')
True
>>> line.startswith('p')
False

Prefixes

40

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
>>> atpos = data.find('@')
>>> print(atpos)
21
>>> sppos = data.find(' ',atpos)
>>> print(sppos)
31
>>> host = data[atpos+1 : sppos]
>>> print(host)
uct.ac.za

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

21 31

Parsing and Extracting

41

for loops

for name in range(start, end):
statements

for name in range(start, end, step):
statements

– Repeats for values start (inclusive) to end (exclusive)
>>> for i in range(2, 6):

print i
2
3
4
5
>>> for i in range(15, 0, -5):

print i, "squared is", (i * i)
15 squared is 225
10 squared is 100
5 squared is 25

42

Cumulative loops

• Some loops incrementally compute a value.
– sometimes called a cumulative loop

sum = 0
for i in range(1, 11):

sum = sum + (i * i)
print "sum of first 10 squares is", sum

Output:
sum of first 10 squares is 385

43

• The break statement ends the current loop and jumps to the statement immediately
following the loop

• It is like a loop test that can happen anywhere in the body of the loop

Breaking Out of a Loop

> hello there
hello there
> finished
finished
> done
Done!

while True:
line = input('> ')
if line == 'done' :

break
print(line)

print('Done!')

44

• The continue statement ends the current iteration and jumps to the top of the loop
and starts the next iteration

Finishing an Iteration with continue

while True:
line = input('> ')
if line[0] == '#' :

continue
if line == 'done' :

break
print(line)

print('Done!')

> hello there
hello there
> # don't print this
> print this!
print this!
> done
Done!

45

Looping Through a Set

print('Before')
for thing in [9, 41, 12, 3, 74, 15] :

print(thing)
print('After')

$ python basicloop.py
Before
9
41
12
3
74
15
After

46

Finding the Largest Value

largest_so_far = -1
print('Before', largest_so_far)
for the_num in [9, 41, 12, 3, 74, 15] :

if the_num > largest_so_far :
largest_so_far = the_num

print(largest_so_far, the_num)

print('After', largest_so_far)

$ python largest.py
Before -1
9 9
41 41
41 12
41 3
74 74
74 15
After 74

We make a variable that contains the largest value we have seen so far. If the current
number we are looking at is larger, it is the new largest value we have seen so far.

47

Sequential

Repeated

Conditional

name = input('Enter file:')
handle = open(name, 'r')

counts = dict()
for line in handle:

words = line.split()
for word in words:

counts[word] = counts.get(word,0) + 1

bigcount = None
bigword = None
for word,count in counts.items():

if bigcount is None or count > bigcount:
bigword = word
bigcount = count

print(bigword, bigcount)

48

name = input('Enter file:')
handle = open(name, 'r')

counts = dict()
for line in handle:

words = line.split()
for word in words:

counts[word] = counts.get(word,0) + 1

bigcount = None
bigword = None
for word,count in counts.items():

if bigcount is None or count > bigcount:
bigword = word
bigcount = count

print(bigword, bigcount)

Count words in a file

A word used to read
data from a user

A sentence about
updating one of the

many counts

A paragraph about how
to find the largest item

in a list

49

Exercise

• Write a program that reads a student's homework scores as input and computes the
student's homework percentage.
This program computes your average homework grade.
How many assignments were there? 3

Assignment 1
Points earned? 12
Points possible? 15

Assignment 2
Points earned? 10
Points possible? 20

Assignment 3
Points earned? 4
Points possible? 5

Your total score: 26 / 40 : 65 %

50

while
• while loop: Executes as long as a condition is True.

– good for indefinite loops (repeat an unknown number of times)

• Syntax:
while condition:

statements

• Example:
number = 1
while number < 200:

print number,
number = number * 2

– Output:
1 2 4 8 16 32 64 128

51

astr = 'Hello Bob'
try:

istr = int(astr)
except:

istr = -1

print('First', istr)

astr = '123'
try:

istr = int(astr)
except:

istr = -1

print('Second', istr)

$ python tryexcept.py
First -1
Second 123

When the first conversion fails - it
just drops into the except: clause

and the program continues.

When the second conversion
succeeds - it just skips the except:
clause and the program continues.

try / except

52

try / except astr = 'Bob'

astr = 'Bob'
try:

print('Hello')
istr = int(astr)
print('There')

except:
istr = -1

print('Done', istr)

print('Hello')

print('There')

istr = int(astr)

print('Done', istr)

istr = -1

Safety net

53

Example

$ python3 trynum.py
Enter a number:42
Nice work
$ python3 trynum.py
Enter a number:forty-two
Not a number
$

rawstr = input('Enter a number:')
try:

ival = int(rawstr)
except:

ival = -1

if ival > 0 :
print('Nice work')

else:
print('Not a number')

54

Random numbers

– from random import *

– randint(min, max)
Produces a random value between min and max (inclusive)

– Example:
coinflip = randint(1, 2)
if coinflip == 1:

print "Heads"
else:

print "Tails"

Text Processing

56

• string: A sequence of text characters in a program.
– Strings start and end with quote " or apostrophe ' characters.
"hello"
"This is a string"
"This, too, is a string. It can be very long!"

• A string can represent special characters with a backslash.
– \" quotation mark character
– \t tab character
– \\ backslash character

"Bob said, \"Hello!\" to Susan."

Strings

57

Indexes

• Characters in a string are numbered with indexes :
name = "P. Diddy"

• Accessing an individual character from a string:
variable [index]

print name, "starts with", name[0]

Output:
P. Diddy starts with P

index 0 1 2 3 4 5 6 7
character P . D i d d y

58

• A definite loop using a for statement is much more elegant
• The iteration variable is completely taken care of by the for loop

Looping Through Strings

index = 0
while index < len(fruit) :

letter = fruit[index]
print(letter)
index = index + 1

fruit = 'banana'
for letter in fruit :

print(letter)

59

• Look at any continuous section
of a string using a colon
operator

Slicing Strings

>>> print(s[0:4])
Mont
>>> print(s[6:7])
P
>>> print(s[6:20])
Python

0
M

1
o

2
n

3
t

4
y

5 6
P

7
y

8
t

9
h

10
o

11
n

>>> s = 'Monty Python'
>>> print(s[:2])
Mo
>>> print(s[8:])
thon
>>> print(s[:])
Monty Python

60

• When the + operator is applied to strings, it means “concatenation”

String Concatenation

>>> a = 'Hello'
>>> b = a + 'There'
>>> print(b)
HelloThere
>>> c = a + ' ' + 'There'
>>> print(c)
Hello There
>>>

61

• The built-in function len gives us the length of a string

Strings Have Length

>>> fruit = 'banana'
>>> print(len(fruit))
6

0
b

1
a

2
n

3
a

4
n

5
a

62

String properties

• len(string) - number of characters in a string
(including spaces)

• str.lower(string) - lowercase version of a string
• str.upper(string) - uppercase version of a string

• Example:
name = "Martin Douglas Stepp"
big_name = str.upper(name)
print big_name, "has", len(big_name), "characters"

Output:
MARTIN DOUGLAS STEPP has 20 characters

63

• A string is a sequence of characters
• A string literal uses quotes

'Hello' or "Hello"
• For strings, + means “concatenate”
• When a string contains numbers, it is

still a string
• We can convert numbers in a string

into a number using int()

Data Types Conversion

>>> str1 = "Hello"
>>> str2 = 'there'
>>> bob = str1 + str2
>>> print(bob)
Hellothere
>>> str3 = '123'
>>> str3 = str3 + 1
Traceback (most recent call
last): File "<stdin>", line 1,
in <module>
TypeError: cannot concatenate
'str' and 'int' objects
>>> x = int(str3) + 1
>>> print(x)
124
>>>

64

Text processing

• text processing: Examining, editing, formatting text.
– Often uses loops that examine characters one by one.

• A for loop can examine each character in a string in order.
– Example:
for c in "booyah":

print c

Output:
b
o
o
y
a
h

65

Strings and numbers

• ord(text) - Converts a string into a number.
– Example: ord("a") is 97, ord("b") is 98, ...

– Characters use standard mappings such as ASCII and Unicode.

• chr(number) - Converts a number into a string.
– Example: chr(99) is "c"

66

Exercise

• Write a program that "encrypts" a secret message by shifting the letters of the
message by 1:
– e.g. "Attack" when rotated by 1 becomes "buubdl"

Functions

68

• There are two kinds of functions in Python.
– - Built-in functions that are provided as part of Python - print(), input(), type(), float(),

int() ...
– - Functions that we define ourselves and then use

• We treat the built-in function names as “new” reserved words
(i.e., we avoid them as variable names)

Python Functions

69

• define a function using the def reserved word
• We call/invoke the function by using the function name, parentheses, and arguments

in an expression

Function Definition

70

>>> big = max('Hello world')
>>> print(big)
w
>>> tiny = min('Hello world')
>>> print(tiny)

>>>

big = max('Hello world')
Argument

'w'

Result

Assignment

71

• When you put an integer and
floating point in an expression,
the integer is implicitly converted
to a float

• You can control this with the built-
in functions int() and float()

Type Conversions

>>> print(float(99) / 100)
0.99
>>> i = 42
>>> type(i)
<class 'int'>
>>> f = float(i)
>>> print(f)
42.0
>>> type(f)
<class 'float'>
>>> print(1 + 2 * float(3) / 4 – 5)
-2.5
>>>

72

• We prefer to read data in using
strings and then parse and convert
the data as we need

• This gives us more control over error
situations and/or bad user input

• Input numbers must be converted
from strings

Reading and Converting

>>> name = input('Enter:')
Enter:Chuck
>>> print(name)
Chuck
>>> apple = input('Enter:')
Enter:100
>>> x = apple – 10
Traceback (most recent call
last): File "<stdin>", line 1,
in <module>
TypeError: unsupported operand
type(s) for -: 'str' and 'int'
>>> x = int(apple) – 10
>>> print(x)
90

73

• We create a new function using the def keyword followed by optional parameters in
parentheses

• We indent the body of the function
• This defines the function but does not execute the body of the function

Building our Own Functions

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

74

• An argument is a value we pass into the function as its input when we call the
function

• We use arguments so we can direct the function to do different kinds of work when
we call it at different times

• We put the arguments in parentheses after the name of the function

Arguments

big = max('Hello world')
Argument

75

• A parameter is a variable which we use in the
function definition. It is a “handle” that
allows the code in the function to access the
arguments for a particular function
invocation.

Parameters

>>> def greet(lang):
... if lang == 'es':
... print('Hola')
... elif lang == 'fr':
... print('Bonjour')
... else:
... print('Hello')
...
>>> greet('en')
Hello
>>> greet('es')
Hola
>>> greet('fr')
Bonjour
>>>

76

• Often a function will take its arguments, do some computation, and return a value to
be used as the value of the function call in the calling expression. The return
keyword is used for this.

Return Values

def greet():
return "Hello"

print(greet(), "Glenn")
print(greet(), "Sally")

Hello Glenn
Hello Sally

77

• You cannot use reserved words as variable names / identifiers

Reserved Words

False class return is finally
None if for lambda continue True
def from while nonlocal and del global
not with as elif try or yield
assert else import pass break except
in raise

Files

79

• A file handle open for read can be
treated as a sequence of strings where
each line in the file is a string in the
sequence

• We can use the for statement to iterate
through a sequence

• Remember - a sequence is an ordered
set

Opening and Reading a File

xfile = open('mbox.txt')
for cheese in xfile:

print(cheese)

80

• Open a file read-only
• Use a for loop to read each line
• Count the lines and print out the

number of lines

Counting Lines in a File

fhand = open('mbox.txt')
count = 0
for line in fhand:

count = count + 1
print('Line Count:', count)

$ python open.py
Line Count: 132045

81

• We can read the whole file
(newlines and all) into a single
string

Reading the *Whole* File

>>> fhand = open('mbox-short.txt')
>>> inp = fhand.read()
>>> print(len(inp))
94626
>>> print(inp[:20])
From stephen.marquar

82

Bad File Names

fname = input('Enter the file name: ')
try:

fhand = open(fname)
except:

print('File cannot be opened:', fname)
quit()

Lists

84

• A collection allows us to put many values in a single “variable”
• A collection is nice because we can carry all many values around in one convenient

package.

A List is a Kind of Collection

friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

85

• Just like strings, we can get at any single element in a list using an index specified in
square brackets

Looking Inside Lists

0
Joseph

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print(friends[1])
Glenn
>>> 1

Glenn
2

Sally

86

• Strings are “immutable” - we cannot
change the contents of a string - we must
make a new string to make any change

• Lists are “mutable” - we can change an
element of a list using the index operator

Lists are Mutable

>>> fruit = 'Banana'
>>> fruit[0] = 'b'
Traceback
TypeError: 'str' object does not
support item assignment
>>> x = fruit.lower()
>>> print(x)
banana
>>> lotto = [2, 14, 26, 41, 63]
>>> print(lotto)
[2, 14, 26, 41, 63]
>>> lotto[2] = 28
>>> print(lotto)
[2, 14, 28, 41, 63]

87

Example

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :
print('Happy New Year:', friend)

for i in range(len(friends)) :
friend = friends[i]
print('Happy New Year:', friend) Happy New Year: Joseph

Happy New Year: Glenn
Happy New Year: Sally

>>> friends = ['Joseph', 'Glenn', 'Sally']
>>> print(len(friends))
3
>>> print(range(len(friends)))
[0, 1, 2]
>>>

88

• We can create a new list by adding two existing lists together

Concatenating Lists Using +

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print(c)
[1, 2, 3, 4, 5, 6]
>>> print(a)
[1, 2, 3]

89

Lists Can Be Sliced Using :

>>> t = [9, 41, 12, 3, 74, 15]
>>> t[1:3]
[41,12]
>>> t[:4]
[9, 41, 12, 3]
>>> t[3:]
[3, 74, 15]
>>> t[:]
[9, 41, 12, 3, 74, 15]

Remember: Just like in
strings, the second
number is “up to but not
including”

90

List Methods

>>> x = list()
>>> type(x)
<type 'list'>
>>> dir(x)
['append', 'clear', 'copy', 'count', 'extend',
'index', 'insert', 'pop', 'remove', 'reverse',
'sort']
>>>

http://docs.python.org/tutorial/datastructures.html

91

• We can create an empty list and then
add elements using the append
method

• The list stays in order and new
elements are added at the end of the
list

Building a List from Scratch

>>> stuff = list()
>>> stuff.append('book')
>>> stuff.append(99)
>>> print(stuff)
['book', 99]
>>> stuff.append('cookie')
>>> print(stuff)
['book', 99, 'cookie']

92

• Sometimes we split a line one way, and then grab one of the pieces of the line and
split that piece again

The Double Split Pattern

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
print pieces[1]

93

The Double Split Pattern

stephen.marquard@uct.ac.za

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
print pieces[1]

94

The Double Split Pattern

['stephen.marquard', 'uct.ac.za']

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@')
print pieces[1]

stephen.marquard@uct.ac.za

95

The Double Split Pattern

['stephen.marquard', 'uct.ac.za']

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words[1]
pieces = email.split('@')
print(pieces[1])

stephen.marquard@uct.ac.za

'uct.ac.za'

Dictionary

97

• Dictionaries are Python’s most powerful data collection
• Dictionaries allow us to do fast database-like operations in Python
• Dictionaries have different names in different languages

– - Associative Arrays - Perl / PHP
– - Properties or Map or HashMap - Java
– - Property Bag - C# / .Net

Dictionaries

98

• Dictionaries are like lists except that they use keys instead of numbers to look up
values

Comparing Lists and Dictionaries

>>> lst = list()
>>> lst.append(21)
>>> lst.append(183)
>>> print(lst)
[21, 183]
>>> lst[0] = 23
>>> print(lst)
[23, 183]

>>> ddd = dict()
>>> ddd['age'] = 21
>>> ddd['course'] = 182
>>> print(ddd)
{'course': 182, 'age': 21}
>>> ddd['age'] = 23
>>> print(ddd)
{'course': 182, 'age': 23}

99

>>> lst = list()
>>> lst.append(21)
>>> lst.append(183)
>>> print(lst)
[21, 183]
>>> lst[0] = 23
>>> print(lst)
[23, 183]

>>> ddd = dict()
>>> ddd['age'] = 21
>>> ddd['course'] = 182
>>> print(ddd)
{'course': 182, 'age': 21}
>>> ddd['age'] = 23
>>> print(ddd)
{'course': 182, 'age': 23}

[0] 21

[1] 183
lst

Key Value

['course'] 182

['age'] 21
ddd

Key Value

List

Dictionary

100

• We can use get() and provide a default value of zero when the key is not yet in the
dictionary - and then just add one

Counting with get()

counts = dict()
names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']
for name in names :

counts[name] = counts.get(name, 0) + 1
print(counts)

Default {'csev': 2, 'zqian': 1, 'cwen': 2}

101

Counting Pattern

counts = dict()
print('Enter a line of text:')
line = input('')

words = line.split()

print('Words:', words)

print('Counting...')
for word in words:

counts[word] = counts.get(word,0) + 1
print('Counts', counts)

The general pattern to count the
words in a line of text is to split
the line into words, then loop
through the words and use a
dictionary to track the count of
each word independently.

102

• You can get a list of keys, values, or items (both) from a dictionary

Retrieving Lists of Keys and Values

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}
>>> print(list(jjj))
['jan', 'chuck', 'fred']
>>> print(jjj.keys())
['jan', 'chuck', 'fred']
>>> print(jjj.values())
[100, 1, 42]
>>> print(jjj.items())
[('jan', 100), ('chuck', 1), ('fred', 42)]
>>>

What is a “tuple”? - coming soon...

Credits

Charles R. Severance (www.dr-chuck.com) of the University of Michigan School of Information

Marty Stepp of the University of Washington

