
1

CSC 322: Computer Organization Lab
Lecture 01: Introduction to C

1

Grading and Class Policies
§ Exam: 30%

§ Labs: 70%
§ Exam Details
– Exams are closed book, closed notes

§ All assignments must be your own original work.
– Cheating/copying/partnering will not be tolerated

Spring 2021 CSC322: Computer Organization Lab 2

2

2

Lab Reports
§ You need to submit a report at the start of the next lab

§ You will need to use the template on the course page

Spring 2021 CSC322: Computer Organization Lab 3

3

Course Introduction
§ Lab will be held on Monday from 2:00-4:00 pm
– Prefer to break it into two sessions: 30 minutes for the lecture and 30 minutes for the

hands-on
– You will work in groups of two for most of the labs

§ Prerequisites
– The ability to program

§ What will we do in the lab?
– Learn C programming
– Learn Verilog
–Model hardware using the above languages

§ We will be using Overleaf in order to write the reports!

Spring 2021 CSC322: Computer Organization Lab 4

4

3

Contact Information
§ Haidar M. Harmanani
–Office: Block A, 810
–Hours: By appointment.
– Email: haidar@lau.edu.lb

Spring 2021 CSC322: Computer Organization Lab 5

5

Lab Assignments
§ All assignments and handouts will be communicated via piazza
–Make sure you enable your account

§ Use Google Classroom for questions and inquiries
–No questions will be answered via email

§ All assignments must be submitted via github
– git is a distributed version control system
– Version control systems are better tools for sharing code than emailing files, using flash

drives, or Dropbox
–Make sure you get a private repo
o Apply for a free account: https://education.github.com/discount_requests/new

Spring 2021 CSC322: Computer Organization Lab 6

6

mailto:haidar@lau.edu.lb
https://education.github.com/discount_requests/new

4

On to C …

7

Why learn C (after Java)?
§ Both high-level and low-level language
– OS: user interface to kernel to device driver

§ Better control of low-level mechanisms
– Memory allocation, specific memory locations

§ Performance better than Java
– More predictable

§ Java hides many details needed for writing OS code
§ But you will have to worry about:
– Memory management
– Initialization and error detection

§ More room for mistakes in C
§ Philosophical considerations:
– Being multi-lingual is good!
– Should be able to trace program from UI to assembly (EEs: to electrons)

8Spring 2021 CSC322: Computer Organization Lab

8

5

C history
§ C
– Dennis Ritchie in late 1960s and early 1970s
– systems programming language
o make OS portable across hardware platforms
o not necessarily for real applications – could be written in Fortran or PL/I

§ C++
– Bjarne Stroustrup (Bell Labs), 1980s
– object-oriented features

§ Java
– James Gosling in 1990s, originally for embedded systems
– object-oriented, like C++
– ideas and some syntax from C

9Spring 2021 CSC322: Computer Organization Lab

9

C for Java programmers
§ Java is mid-90s high-level OO language

§ C is early-70s procedural language
§ C advantages:
–Direct access to OS primitives (system calls)
– Fewer library issues – just execute

§ (More) C disadvantages:
– language is portable, APIs are not
–memory and “handle” leaks
– preprocessor can lead to obscure errors

10Spring 2021 CSC322: Computer Organization Lab

10

6

Simple Example

11

#include <stdio.h>

void main(void)
{

printf(“Hello World. \n \t and you ! \n ”);
/* print out a message */

return;
}

$ gcc hello.c
$./a.out
$ Hello World.

and you !
$

Spring 2021 CSC322: Computer Organization Lab

11

Simple Example

12

#include <stdio.h>

void main(void)
{

printf(“Hello World. \n \t and you ! \n ”);
/* print out a message */

return;
}

$ gcc –o hello hello.c
$./hello
$ Hello World.

and you !
$

Spring 2021 CSC322: Computer Organization Lab

12

7

Dissecting the example
§ #include <stdio.h>
– include header file stdio.h
– # lines processed by pre-processor
–No semicolon at end
– Lower-case letters only – C is case-sensitive

§ void main(void){ … } is the only code executed

§ printf(“ /* message you want printed */ ”);

§ \n = newline, \t = tab

§ \ in front of other special characters within printf.
– printf(“Have you heard of \”The Rock\” ? \n”);

13Spring 2021 CSC322: Computer Organization Lab

13

Compiling and Executing a C Program

14

8

Executing the C program
§ How can we pass parameters to a C program?

§ Example
– Assume we have a set of names in a file
– I would like to pass the file as an argument so that these names are processed.
– I do not wish to be prompted for a file name

15Spring 2021 CSC322: Computer Organization Lab

15

Executing the C program
int main(int argc, char argv[])

§ argc is the argument count
§ argv is the argument vector
– array of strings with command-line arguments

§ the int value is the return value
– convention: 0 means success, > 0 some error
– can also declare as void (no return value)

16Spring 2021 CSC322: Computer Organization Lab

16

9

Executing a C program
§ Name of executable + space-separated arguments

§ $ a.out 1 23 ‘third arg’

17

4

a.out 1 23 “third arg”

argc argv

Spring 2021 CSC322: Computer Organization Lab

17

Executing a C program

18

§ If no arguments, simplify:
int main() {

puts(“Hello World”);

exit(0);

}

§ Uses exit() instead of return – same thing.

Spring 2021 CSC322: Computer Organization Lab

18

10

Executing C programs
§ Scripting languages are usually interpreted
– perl (python, Tcl) reads script, and executes it
– sometimes, just-in-time compilation – invisible to user

§ Java programs semi-interpreted:
– javac converts foo.java into foo.class
– not machine-specific
– byte codes are then interpreted by JVM

§ C programs are normally compiled and linked:
– gcc converts foo.c into a.out
– a.out is executed by OS and hardware

19Spring 2021 CSC322: Computer Organization Lab

19

Executing C programs

20

PVM

javac

gcc

java

a.out

x.py

x.java

x.c

dataargs

results

Spring 2021 CSC322: Computer Organization Lab

Python

Java

C

data

args

20

11

The C compiler gcc
§ gcc invokes C compiler

§ gcc translates C program into executable for some target
§ default file name a.out

§ also “cross-compilation”
$ gcc hello.c

$ a.out

Hello, World!

21Spring 2021 CSC322: Computer Organization Lab

21

Using gcc
§ Two-stage compilation
– pre-process & compile: gcc –c hello.c
– link: gcc –o hello hello.o

§ Linking several modules:
gcc –c a.c à a.o
gcc –c b.cà b.o
gcc –o hello a.o b.o

§ Using math library
– gcc –o calc calc.c -lm

22Spring 2021 CSC322: Computer Organization Lab

22

12

Error reporting in gcc
§ Multiple sources
– preprocessor: missing include files
– parser: syntax errors
– assembler: rare
– linker: missing libraries

23Spring 2021 CSC322: Computer Organization Lab

23

Error reporting in gcc
§ If gcc gets confused, hundreds of messages
– fix first, and then retry – ignore the rest

§ gcc will produce an executable with warnings
– don’t ignore warnings – compiler choice is often not what you had in mind

§ Does not flag common mindos
– if (x = 0) vs. if (x == 0)

24Spring 2021 CSC322: Computer Organization Lab

24

13

gcc errors
§ Produces object code for each module

§ Assumes references to external names will be resolved later
§ Undefined names will be reported when linking:

undefined symbol first referenced in file

_print program.o

ld fatal: Symbol referencing errors

No output written to file.

25Spring 2021 CSC322: Computer Organization Lab

25

Let us try to compile something using gcc

26

26

14

Source Code

27

#include <stdio.h>

int main(void)
{
int iNumberOfMoney = 0; /* Initialization, required */

printf(“How much money do you have ?:”);
scanf (“%d”, &iNumberOfMoney); /* Read input */
printf(“You have %d Lebanese Pounds.\n”, iNumberOfMoney);

return 0;
}

$ How much money do you have ?: 200000 (enter)
You have 200000 Lebanese Pounds.

Spring 2021 CSC322: Computer Organization Lab

27

Using emacs, Linux, and gcc

28Spring 2021 CSC322: Computer Organization Lab

28

15

Type The code

29Spring 2021 CSC322: Computer Organization Lab

29

Compile and Run

30Spring 2021 CSC322: Computer Organization Lab

30

16

gcc Options
§ gcc –o example example.c –g -Wall
– ‘-o’ option tells the compiler to name the executable ‘example’
– ‘-g’ option adds symbolic information to example for debugging
– ‘–Wall’ tells it to print out all warnings (very useful!!!)
–Can also give ‘-O6’ to turn on full optimization
– -l to include libraries
– -E for preprocessor output only

§ To execute the program simply type: ./example
§ gdb is the Linux debugger

31Spring 2021 CSC322: Computer Organization Lab

31

gcc Options: Summary
§ Behavior controlled by command-line switches:

32

-o file output file for object or executable
-Wall all warnings – use always!
-c compile single module (non-main)
-g insert debugging code (gdb)
-p insert profiling code

-l library

-E preprocessor output only

Spring 2021 CSC322: Computer Organization Lab

32

17

Let us redo the same example using Developer Studio
or Xcode

33

33

Open Xcode:

Spring 2021 CSC322: Computer Organization Lab 34

§ Make sure that Xcode is
already installed
–Otherwise, freely download

it from the App Store

34

18

Open Xcode and Create a Project Using the
Command Line Tool

Spring 2021 CSC322: Computer Organization Lab 35

35

Name your project hello.c and Select any
organization identifier

Spring 2021 CSC322: Computer Organization Lab 36

36

19

Edit and Compile
§ Type your code in the built-in editor

§ Compile by clicking on the arrow
§ Output will be appear in the bottom window

Spring 2021 CSC322: Computer Organization Lab 37

37

Spring 2021 CSC322: Computer Organization Lab 38

38

20

More C Programming

39

C preprocessor
§ The C preprocessor (cpp) is a macro-processor which
–manages a collection of macro definitions
– reads a C program and transforms it
– Example:
#define MAXVALUE 100
#define check(x) ((x) < MAXVALUE)
if (check(i) { …}

becomes
if ((i) < 100) {…}

40Spring 2021 CSC322: Computer Organization Lab

40

21

C preprocessor
§ Preprocessor directives start with # at beginning of line:
– define new macros
– input files with C code (typically, definitions)
– conditionally compile parts of file

§ gcc –E shows output of preprocessor

§ Can be used independently of compiler

41Spring 2021 CSC322: Computer Organization Lab

41

C preprocessor
#define name const-expression

#define name (param1,param2,…) expression
#undef symbol

§ replaces name with constant or expression

§ textual substitution
§ symbolic names for global constants

§ in-line functions (avoid function call overhead)
–mostly unnecessary for modern compilers

§ type-independent code

42Spring 2021 CSC322: Computer Organization Lab

42

22

C preprocessor
§ Example: #define MAXLEN 255

§ Lots of system .h files define macros
§ invisible in debugger

§ getchar(), putchar() in stdio library
#define valid(x) ((x) > 0 && (x) < 20)

if (valid(x++)) {…}

valid(x++) -> ((x++) > 0 && (x++) < 20)

43

Don’t treat macros like function calls

Spring 2021 CSC322: Computer Organization Lab

43

C preprocessor –file inclusion
#include “filename.h”
#include <filename.h>

§ inserts contents of filename into file to be compiled
§ “filename” relative to current directory
§ <filename> relative to /usr/include
§ gcc –I flag to re-define default
§ import function prototypes (cf. Java import)
§ Examples:
#include <stdio.h>
#include “mydefs.h”
#include “/home/alice/program/defs.h”

44Spring 2021 CSC322: Computer Organization Lab

44

23

C preprocessor – conditional compilation
#if expression
code segment 1

#else

code segment 2

#endif
§ preprocessor checks value of expression
§ if true, outputs code segment 1, otherwise code segment 2
§ machine or OS-dependent code
§ can be used to comment out chunks of code – bad!
#define OS linux
…
#if OS == linux
puts(“Linux!”);

#else
puts(“Something else”);

#endif

45Spring 2021 CSC322: Computer Organization Lab

45

C preprocessor - ifdef
§ For boolean flags, easier:
#ifdef name
code segment 1
#else
code segment 2
#endif

§ preprocessor checks if name has been defined
–#define USEDB

§ if so, use code segment 1, otherwise 2

46Spring 2021 CSC322: Computer Organization Lab

46

24

Advice on preprocessor
§ Limit use as much as possible
– subtle errors
– not visible in debugging
– code hard to read

§ much of it is historical baggage
§ there are better alternatives for almost everything:
– #define INT16 -> type definitions
– #define MAXLEN -> const
– #define max(a,b) -> regular functions
– comment out code -> CVS, functions

§ limit to .h files, to isolate OS & machine-specific code

47Spring 2021 CSC322: Computer Organization Lab

47

C Comments and data types

48

25

Comments
§ /* any text until */

§ // C++-style comments – careful!
§ no /** */, but doc++ has similar conventions

§ Convention for longer comments:
/*
* AverageGrade()
* Given an array of grades, compute the average.
*/

§ Avoid **** boxes – hard to edit, usually look ragged.

49Spring 2021 CSC322: Computer Organization Lab

49

Numeric data types

50

type bytes range

char 1 -128 … 127

short 2 -65536…65535

int, long 4 -2,147,483,648 to 2,147,483,647

long long 8 264

float 4 3.4E+/-38 (7 digits)

double 8 1.7E+/-308 (15 digits)

Spring 2021 CSC322: Computer Organization Lab

50

26

Remarks on data types
§ Range differs – int is “native” size, e.g., 64 bits on 64-bit machines, but
sometimes int = 32 bits, long = 64 bits

§ Also, unsigned versions of integer types
– same bits, different interpretation

§ char = 1 “character”, but only true for ASCII and other Western char sets

51Spring 2021 CSC322: Computer Organization Lab

51

Type conversion

52

#include <stdio.h>
void main(void)
{
int i,j = 12; /* i not initialized, only j */
float f1,f2 = 1.2;

i = (int) f2; /* explicit: i <- 1, 0.2 lost */
f1 = i; /* implicit: f1 <- 1.0 */

f1 = f2 + (int) j; /* explicit: f1 <- 1.2 + 12.0 */
f1 = f2 + j; /* implicit: f1 <- 1.2 + 12.0 */

}

Spring 2021 CSC322: Computer Organization Lab

52

27

Explicit and implicit conversions
§ Implicit: e.g., s = a (int) + b (char)

§ Promotion: char -> short -> int -> …
§ If one operand is double, the other is made double

§ If either is float, the other is made float, etc.

§ Explicit: type casting – (type)
§ Almost any conversion does something – but not necessarily what you intended

53Spring 2021 CSC322: Computer Organization Lab

53

Type conversion
int x = 100000;

short s;

s = x;

printf(“%d %d\n”, x, s);

100000 -31072

54Spring 2021 CSC322: Computer Organization Lab

54

28

C – no booleans
§ C doesn’t have booleans

§ Emulate as int or char, with values 0 (false) and 1 or non-zero (true)
§ Allowed by flow control statements:

if (n = 0) {
printf(“something wrong”);

}

§ Assignment returns zero -> false

55Spring 2021 CSC322: Computer Organization Lab

55

User-defined types
§ typedef gives names to types:
typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smallNumber x;
byte b;
String name;

56Spring 2021 CSC322: Computer Organization Lab

56

29

Defining your own boolean
typedef char boolean;

#define FALSE 0

#define TRUE 1

§ Generally works, but beware:
check = x > 0;
if (check == TRUE) {…}

§ If x is positive, check will be non-zero, but may not be 1.

57Spring 2021 CSC322: Computer Organization Lab

57

Enumerated types
§ Define new integer-like types as enumerated types:
typedef enum {

Red, Orange, Yellow, Green, Blue, Violet
} Color;
enum weather {rain, snow=2, sun=4};

§ look like C identifiers (names)
§ are listed (enumerated) in definition

§ treated like integers
– can add, subtract – even color + weather
– can’t print as symbol (unlike Pascal)
– but debugger generally will

58Spring 2021 CSC322: Computer Organization Lab

58

30

Enumerated types
§ Just syntactic sugar for ordered collection of integer constants:
typedef enum {

Red, Orange, Yellow
} Color;

is like
#define Red 0
#define Orange 1
#define Yellow 2

§ typedef enum {False, True} boolean;

59Spring 2021 CSC322: Computer Organization Lab

59

Bit fields
§ On previous slides, labeled integers with size in bits (e.g., pt:7)

§ Allows aligning struct with real memory data, e.g., in protocols or device drivers
§ Order can differ between little/big-endian systems

§ Alignment restrictions on modern processors – natural alignment

§ Sometimes clearer than (x & 0x8000) >> 31

60Spring 2021 CSC322: Computer Organization Lab

60

31

Control Structures

61

61

Control structures
§ Same as Java

§ sequencing: ;
§ grouping: {...}

§ selection: if, switch

§ iteration: for, while

62Spring 2021 CSC322: Computer Organization Lab

62

32

Sequencing and grouping
§ statement1 ; statement2; statement n;
– executes each of the statements in turn
– a semicolon after every statement
– not required after a {...} block

§ { statements} {declarations statements}
– treat the sequence of statements as a single operation (block)
– data objects may be defined at beginning of block

63Spring 2021 CSC322: Computer Organization Lab

63

The if statement
§ Same as Java
if (condition1) {statements1}
else if (condition 2) {statements2}
else if (condition n-1) {statements n-1}|
else {statementsn}

§ evaluates statements until find one with non-zero result

§ executes corresponding statements

64Spring 2021 CSC322: Computer Organization Lab

64

33

The if statement
§ Can omit {}, but careful
if (x > 0)

printf(“x > 0!”);
if (y > 0)

printf(“x and y > 0!”);

65Spring 2021 CSC322: Computer Organization Lab

65

The switch statement
§ Allows choice based on a single value
switch(expression) {

case const1: statements1; break;
case const2: statements2; break;
default: statementsn;

}

§ Effect: evaluates integer expression

§ looks for case with matching value
§ executes corresponding statements (or defaults)

66Spring 2021 CSC322: Computer Organization Lab

66

34

The switch statement
Weather w;
switch(w) {

case rain:

printf(“bring umbrella’’);

case snow:
printf(“wear jacket”);

break;

case sun:
printf(“wear sunscreen”);

break;

default:

printf(“strange weather”);
}

67Spring 2021 CSC322: Computer Organization Lab

67

Repetition
§ C has several control structures for repetition

68

Statement repeats an action...
while(c) {} zero or more times, while condition is ¹ 0

do {...} while(c) one or more times, while condition is ¹ 0

for (start; cond; upd) zero or more times, with initialization and update

Spring 2021 CSC322: Computer Organization Lab

68

35

The break statement
§ break allows early exit from one loop level
for (init; condition; next) {

statements1;

if (condition2) break;

statements2;

}

69Spring 2021 CSC322: Computer Organization Lab

69

The continue statement
§ continue skips to next iteration, ignoring rest of loop body

§ does execute next statement
for (init; condition1; next) {

statement2;
if (condition2) continue;
statement2;

}

§ often better written as if with block

70Spring 2021 CSC322: Computer Organization Lab

70

36

Using C to Model Hardware

71

Spring 2021 CSC322: Computer Organization Lab 72

AN
D

O
R

Op1

Out

Sel2

Op2

mux1

A B

mux2

Result

Sel0

Sel1

Add/Sub

16

16

16

0

1

1

0

72

37

C Objects (or lack thereof)

73

Objects (or lack thereof)
§ C does not have objects (C++ does)

§ Variables for C’s primitive types are defined very similarly:
short int x;
char ch;
float pi = 3.1415;
float f, g;

§ Variables defined in {} block are active only in block
§ Variables defined outside a block are global (persist during program execution),
but may not be globally visible (static)

74Spring 2021 CSC322: Computer Organization Lab

74

38

Spring 2021 CSC322: Computer Organization Lab 75

char x;
char y = ‘a’;
int z = 10;

Memory
Address

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

x?

01100001 a

00001010 }Z

00000000

00000000

00000000

75

C Variables
§ Variable = container that can hold a value
– in C, pretty much a CPU word or similar

§ default value is (mostly) undefined – treat as random
– compiler may warn you about uninitialized variables

§ ch = ‘a’; x = x + 4;

§ Always pass by value, but can pass address to function:
scanf(“%d%f”, &x, &f);

76Spring 2021 CSC322: Computer Organization Lab

76

39

C Variables
§ Every data object in C has
– a name and data type (specified in definition)
– an address (its relative location in memory)
– a size (number of bytes of memory it occupies)
– visibility (which parts of program can refer to it)
– lifetime (period during which it exists)

§ Warning:
int *foo(char x) {

return &x;
}
pt = foo(x);
*pt = 17;

77Spring 2021 CSC322: Computer Organization Lab

77

C Variables
§ Unlike scripting languages and Java, all C data objects have a fixed size over
their lifetime
– except dynamically created objects

§ Size of object is determined when object is created:
– global data objects at compile time (data)
– local data objects at run-time (stack)
– dynamic data objects by programmer (heap)

78Spring 2021 CSC322: Computer Organization Lab

78

40

Dynamic Memory Allocation
int x;
int arr[20];
int main(int argc, char *argv[]) {
int i = 20;
{into x; x = i + 7;}

}
int f(int n)
{
int a, *p;
a = 1;
p = (int *)malloc(sizeof int);

}

79Spring 2021 CSC322: Computer Organization Lab

79

Dynamic Memory Allocation
§ malloc() allocates a block of memory

§ Lifetime until memory is freed, with free().
§ Memory leakage – memory allocated is never freed:
char *combine(char *s, char *t) {

u = (char *)malloc(strlen(s) + strlen(t) + 1);
if (s != t) {

strcpy(u, s); strcat(u, t);
return u;

} else {
return 0;

}
}

80Spring 2021 CSC322: Computer Organization Lab

80

41

Dynamic Memory Allocation
§ Note: malloc() does not initialize data

§ void *calloc(size_t n, size_t elsize) does initialize (to zero)
§ Can also change size of allocated memory blocks:
void *realloc(void *ptr, size_t size)
ptr points to existing block, size is new size

§ New pointer may be different from old, but content is copied.

81Spring 2021 CSC322: Computer Organization Lab

81

Memory layout of programs

82

Header info

Code

Data - Heap

0

100

400

560

1010

1200

Dynamic memory

Local memory
+ function call
stack

all normal vars

all malloc()s

Data - stack

Spring 2021 CSC322: Computer Organization Lab

82

42

Address vs. Value
§ Consider memory to be a single huge array:
– Each cell of the array has an address associated with it.
– Each cell also stores some value.
–Do you think they use signed or unsigned numbers? Negative address?!

§ Don’t confuse the address referring to a memory location with the value stored
in that location.

23 42
101 102 103 104 105 ...

Spring 2021 CSC322: Computer Organization Lab 83

83

C Pointers
§ The memory address of a data object, e.g., int x
– can be obtained via &x
– has a data type int * (in general, type *)
– has a value which is a large (4/8 byte) unsigned integer
– can have pointers to pointers: int **

§ The size of a data object, e.g., int x
– can be obtained via sizeof x or sizeof(x)
– has data type size_t, but is often assigned to int (bad!)
– has a value which is a small(ish) integer
– is measured in bytes

84Spring 2021 CSC322: Computer Organization Lab

84

43

C Pointers
§ An address refers to a particular memory location. In other words, it points to a
memory location.

§ Pointer: A variable that contains the address of a variable.

23 42
101 102 103 104 105 ...

x y

Location (address)

name

p
104

Spring 2021 CSC322: Computer Organization Lab 85

85

C Pointers
§ How to create a pointer:
– & operator: get address of a variable

§ How get a value pointed to?
– * “dereference operator”: get value pointed to
– printf(“p points to %d\n”,*p);

p ? x ?
int *p, x;

x = 3;

p =&x;
p ? x 3

p x 3

Note the “*” gets
used 2 different
ways in this
example.

In the declaration
to indicate that p is
going to be a
pointer, and in the
printf to get the
value pointed to by
p.

Spring 2021 CSC322: Computer Organization Lab 86

86

44

C Pointers
§ How to change a variable pointed to?
–Use dereference * operator on left of =

p x 5*p = 5;

p x 3

Spring 2021 CSC322: Computer Organization Lab 87

87

5 10 12.5 9. 8 c d

int x = 5, y = 10;
float f = 12.5, g = 9.8;
char c = ‘c’, d = ‘d’;

4300 4304 4308 4312 4316 4317

C Pointers

Spring 2021 CSC322: Computer Organization Lab 88

88

45

? ?

f f_addr

4300 4304

?

any float

any address

? 4300

f f_addr

4300 4304

C Pointers
• Pointer = variable containing address of another variable

float f; /* data variable */
float *f_addr; /* pointer variable */

f_addr = &f; /* & = address operator */

Spring 2021 CSC322: Computer Organization Lab 89

89

f f_addr

4300 4304

3.2 4300

f f_addr

4300 4304

1.3 4300

C Pointers
f_addr = 3.2; / indirection operator */

float g=*f_addr; /* indirection:g is now 3.2 */

f = 1.3;

Spring 2021 CSC322: Computer Organization Lab 90

90

46

Pointers and Parameter Passing
§ Java and C pass parameters “by value”
– procedure/function/method gets a copy of the parameter, so changing the copy cannot

change the original

void addOne (int x)
{

x = x + 1;
}
int y = 3;
addOne(y);

What is the value of y? Why?

Spring 2021 CSC322: Computer Organization Lab 91

91

Pointers and Parameter Passing
§ How to get a function to change a value?

void addOne (int *p) {
*p = *p + 1;

}
int y = 3;

addOne(&y);

y is now = 4

Spring 2021 CSC322: Computer Organization Lab 92

92

47

C Pointers
§ Every data type T in C/C++ has an associated pointer type T *

§ A value of type * is the address of an object of type T
§ If an object int *xp has value &x, the expression *xp dereferences the
pointer and refers to x, thus has type int

93

&x 42

xp x

int * int

Spring 2021 CSC322: Computer Organization Lab

93

C Pointers
§ If p contains the address of a data object, then *p allows you to use that object

§ *p is treated just like normal data object
int a, b, *c, *d;
d = 17; / BAD idea */
a = 2; b = 3; c = &a; d = &b;
if (*c == *d) puts(“Same value”);
*c = 3;
if (*c == *d) puts(“Now same value”);
c = d;
if (c == d) puts (“Now same address”);

94Spring 2021 CSC322: Computer Organization Lab

94

48

void pointers
§ Generic pointer

§ Unlike other pointers, can be assigned to any other pointer type:
void *v;

char *s = v;

§ Acts like char * otherwise:
v++, sizeof(*v) = 1;

95Spring 2021 CSC322: Computer Organization Lab

95

What does this C program do ?
#include <stdio.h>
struct list{int data; struct list *next};
struct list *start, *end;
void add(struct list *head, struct list *list, int data};
int delete(struct list *head, struct list *tail);

void main(void){
start=end=NULL;
add(start, end, 2);
add(start, end, 3);
printf(“First element: %d”, delete(start, end));

}

void add(struct list *head, struct list *tail, int data}{
if(tail==NULL){
head=tail=malloc(sizeof(struct list));
head->data=data; head->next=NULL;

}
else{
tail->next= malloc(sizeof(struct list));
tail=tail->next; tail->data=data; tail->next=NULL;

}
}

96

Terrified ? Come
back to this at
the end of the
slide set and
work through it.

Spring 2021 CSC322: Computer Organization Lab

96

49

What does this C program, do – cont’d?
void delete (struct list *head, struct list *tail){
struct list *temp;
if(head==tail){
free(head); head=tail=NULL;

}
else{
temp=head->next; free(head); head=temp;

}
}

97Spring 2021 CSC322: Computer Organization Lab

97

C Data Structures

98

98

50

Structured data objects
§ Structured data objects are available as

99

object property
array [] enumerated, numbered from 0

struct names and types of fields

union occupy same space (one of)

Spring 2021 CSC322: Computer Organization Lab

99

Arrays
§ Arrays are defined by specifying an element type and number of elements
– int vec[100];
– char str[30];
– float m[10][10];

§ For array containing N elements, indexes are 0..N-1

§ Stored as linear arrangement of elements
§ Often similar to pointers

100Spring 2021 CSC322: Computer Organization Lab

100

51

Arrays
§ C does not remember how large arrays are (i.e., no length attribute)
§ int x[10]; x[10] = 5; may work (for a while)
§ In the block where array A is defined:
– sizeof A gives the number of bytes in array
– can compute length via sizeof A /sizeof A[0]

§ When an array is passed as a parameter to a function
– the size information is not available inside the function
– array size is typically passed as an additional parameter
o PrintArray(A, VECSIZE);
– or as part of a struct (best, object-like)
– or globally
o #define VECSIZE 10

101Spring 2021 CSC322: Computer Organization Lab

101

Arrays
§ Array elements are accessed using the same syntax as in Java: array[index]

§ Example (iteration over array):
int i, sum = 0;
...
for (i = 0; i < VECSIZE; i++)

sum += vec[i];

§ C does not check whether array index values are sensible (i.e., no bounds
checking)
– vec[-1] or vec[10000] will not generate a compiler warning!
– if you’re lucky, the program crashes with
Segmentation fault (core dumped)

102Spring 2021 CSC322: Computer Organization Lab

102

52

Arrays
§ C references arrays by the address of their first element

§ array is equivalent to &array[0]
§ can iterate through arrays using pointers as well as indexes:
int *v, *last;
int sum = 0;
last = &vec[VECSIZE-1];
for (v = vec; v <= last; v++)

sum += *v;

103Spring 2021 CSC322: Computer Organization Lab

103

2-D arrays

§ 2-dimensional array
int weekends[52][2];

weekends

§ weekends[2][1] is same as *(weekends+2*2+1)
– NOT *weekends+2*2+1 :this is an int !

104

[0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0]

Spring 2021 CSC322: Computer Organization Lab

104

53

Arrays - example

105

#include <stdio.h>
void main(void) {

int number[12]; /* 12 cells, one cell per student */
int index, sum = 0;

/* Always initialize array before use */
for (index = 0; index < 12; index++) {

number[index] = index;
}
/* now, number[index]=index; will cause error:why ?*/

for (index = 0; index < 12; index = index + 1) {
sum += number[index]; /* sum array elements */

}
return;

}

Spring 2021 CSC322: Computer Organization Lab

105

Aside: void, void *
§ Function that doesn’t return anything declared as void

§ No argument declared as void
§ Special pointer *void can point to anything

#include <stdio.h>

extern void *f(void);

void *f(void) {

printf("the big void\n");

return NULL;

}

int main(void) {

f();

}

106Spring 2021 CSC322: Computer Organization Lab

106

54

Overriding functions – function pointers
§ overriding: changing the implementation, leave prototype

§ in C, can use function pointers
returnType (*ptrName)(arg1, arg2, ...);

§ for example, int (*fp)(double x); is a pointer to a function that return an integer

§ double * (*gp)(int) is a pointer to a function that returns a pointer to a double

107Spring 2021 CSC322: Computer Organization Lab

107

structs
§ Similar to fields in Java object/class definitions

§ components can be any type (but not recursive)
§ accessed using the same syntax struct.field

§ Example:
struct {int x; char y; float z;} rec;
...
r.x = 3; r.y = ‘a’; r.z= 3.1415;

108Spring 2021 CSC322: Computer Organization Lab

108

55

structs
§ Record types can be defined
– using a tag associated with the struct definition
– wrapping the struct definition inside a typedef

§ Examples:
struct complex {double real; double imag;};
struct point {double x; double y;} corner;
typedef struct {double real; double imag;} Complex;
struct complex a, b;
Complex c,d;

§ a and b have the same size, structure and type

§ a and c have the same size and structure, but different types

109Spring 2021 CSC322: Computer Organization Lab

109

structs
§ Overall size is sum of elements, plus padding for alignment:
struct {

char x;
int y;
char z;

} s1; sizeof(s1) = ?
struct {

char x, z;
int y;

} s2; sizeof(s2) = ?

110Spring 2021 CSC322: Computer Organization Lab

110

56

structs - example

111

struct person {
char name[41];

int age;
float height;
struct { /* embedded structure */

int month;
int day;
int year;

} birth;
};
struct person me;
me.birth.year=1977;
struct person class[60];

/* array of info about everyone in class */
class[0].name=“Gun”; class[0].birth.year=1971;……

Spring 2021 CSC322: Computer Organization Lab

111

structs
§ Often used to model real memory layout, e.g.,
typedef struct {

unsigned int version:2;
unsigned int p:1;
unsigned int cc:4;
unsigned int m:1;
unsigned int pt:7;
u_int16 seq;
u_int32 ts;

} rtp_hdr_t;

112Spring 2021 CSC322: Computer Organization Lab

112

57

Dereferencing pointers to struct elements
§ Pointers commonly to struct’s
(*sp).element = 42;

y = (*sp).element;

§ Note: *sp.element doesn’t work

§ Abbreviated alternative:
sp->element = 42;

y = sp->element;

113Spring 2021 CSC322: Computer Organization Lab

113

More pointers

114

§ Now , month[6], *(month+6), (month+4)[2], ptr[3], *(ptr+3) are all the
same integer variable.

int month[12]; /* month is a pointer to base address 430*/

month[3] = 7; /* month address + 3 * int elements => int at address (430+3*4) is now 7 */

ptr = month + 2; /* ptr points to month[2], => ptr is now (430+2 * int elements)= 438 */
ptr[5] = 12; /* ptr address + 5 int elements

=> int at address (434+5*4) is now 12.
Thus, month[7] is now 12 */

ptr++; /* ptr <- 438 + 1 * size of int = 442 */
(ptr + 4)[2] = 12; /* accessing ptr[6] i.e., array[9] */

Spring 2021 CSC322: Computer Organization Lab

114

58

C Functions

115

115

Functions
§ Prototypes and functions (cf. Java interfaces)
– extern int putchar(int c);
– putchar(‘A’);
– int putchar(int c) {

do something interesting here
}

§ If defined before use in same file, no need for prototype

§ Typically, prototype defined in .h file
§ Good idea to include <.h> in actual definition

116Spring 2021 CSC322: Computer Organization Lab

116

59

Functions
§ static functions and variables hide them to those outside the same file:
static int x;
static int times2(int c) {

return c*2;
}

§ compare protected class members in Java.

117Spring 2021 CSC322: Computer Organization Lab

117

Functions – const arguments
§ Indicates that argument won’t be changed.

§ Only meaningful for pointer arguments and declarations:
int c(const char *s, const int x) {

const int VALUE = 10;

printf("x = %d\n", VALUE);

return *s;

}

§ Attempts to change *s will yield compiler warning.

118Spring 2021 CSC322: Computer Organization Lab

118

60

Functions - extern

119

#include <stdio.h>

extern char user2line [20]; /* global variable defined
in another file */

char user1line[30]; /* global for this file */
void dummy(void);

void main(void) {
char user1line[20]; /* different from earlier

user1line[30] */
. . . /* restricted to this func */

}

void dummy(){
extern char user1line[]; /* the global user1line[30] */
. . .

}

Spring 2021 CSC322: Computer Organization Lab

119

Overloading functions – var. arg. list
§ Java:

void product(double x, double y);

void product(vector x, vector y);

§ C doesn’t support this, but allows variable number of arguments:
debug(“%d %f”, x, f);

debug(“%c”, c);

§ declared as void debug(char *fmt, ...);
§ at least one known argument

120Spring 2021 CSC322: Computer Organization Lab

120

61

Overloading functions
§must include <stdarg.h>:

#include <stdarg.h>

double product(int number, ...) {
va_list list;

double p;
int i;

va_start(list, number);

for (i = 0, p = 1.0; i < number; i++) {
p *= va_arg(list, double);

}

va_end(list);
}

§ Danger
– product(2,3,4) won’t work, needs product(2,3.0,4.0);

121Spring 2021 CSC322: Computer Organization Lab

121

Overloading functions
§ Limitations:
– cannot access arguments in middle
o needs to copy to variables or local array

– client and function need to know and adhere to type

122Spring 2021 CSC322: Computer Organization Lab

122

62

123

Program with multiple files

Library headers
◦ Standard
◦ User-defined

void myproc(void);
int mydata;

#include <stdio.h>
#include “mypgm.h”

void myproc(void)
{
mydata=2;
. . . /* some code */

}

#include <stdio.h>
#include “mypgm.h”

void main(void)
{

myproc();
}

hw.c mypgm.c

mypgm.h

Spring 2021 CSC322: Computer Organization Lab

123

Data hiding in C
§ C doesn’t have classes or private members, but this can be approximated

§ Implementation defines real data structure:
#define QUEUE_C
#include “queue.h”

typedef struct queue_t {

struct queue_t *next;

int data;

} *queue_t, queuestruct_t;

queue_t NewQueue(void) {

return q;

}

§ Header file defines public data:
#ifndef QUEUE_C

typedef struct queue_t *queue_t;

#endif

queue_t NewQueue(void);

124Spring 2021 CSC322: Computer Organization Lab

124

63

Pointer to function

125

int func(); /*function returning integer*/
int *func(); /*function returning pointer to integer*/
int (*func)(); /*pointer to function returning integer*/
int *(*func)(); /*pointer to func returning ptr to int*/

Spring 2021 CSC322: Computer Organization Lab

125

Function pointers
int (*fp)(void);

double* (*gp)(int);

int f(void)

double *g(int);

fp=f;

gp=g;

int i = fp();

double *g = (*gp)(17); /* alternative */

126Spring 2021 CSC322: Computer Organization Lab

126

64

Pointer to function - example

127

#include <stdio.h>

void myproc (int d);
void mycaller(void (* f)(int), int param);

void main(void) {
myproc(10); /* call myproc with parameter

10*/
mycaller(myproc, 10); /* and do the same again ! */

}

void mycaller(void (* f)(int), int param){
(*f)(param); /* call function *f with param */

}

void myproc (int d){
. . . /* do something with d */

}

Spring 2021 CSC322: Computer Organization Lab

127

C Libraries

128

128

65

Libraries
§ C provides a set of standard libraries for

129

numerical math functions <math.h> -lm
character strings <string.h>
character types <ctype.h>
I/O <stdio.h>

Spring 2021 CSC322: Computer Organization Lab

129

The math library
§ #include <math.h>
– careful: sqrt(5)without header file may give wrong result!

§ gcc –o compute main.o f.o –lm

§ Uses normal mathematical notation:

130

Math.sqrt(2) sqrt(2)

Math.pow(x,5) pow(x,5)

4*math.pow(x,3) 4*pow(x,3)

Spring 2021 CSC322: Computer Organization Lab

130

66

Characters
§ The char type is an 8-bit byte containing ASCII code values (e.g., ‘A’ = 65, ‘B’ = 66,
...)

§ Often, char is treated like (and converted to) int

§ <ctype.h> contains character classification functions:

131

isalnum(ch) alphanumeric [a-zA-Z0-9]

isalpha (ch) alphabetic [a-zA-Z]

isdigit(ch) digit [0-9]

ispunct(ch) punctuation [~!@#%^&...]

isspace(ch) white space [\t\n]

isupper(ch) upper-case [A-Z]

islower(ch) lower-case [a-z]

Spring 2021 CSC322: Computer Organization Lab

131

Strings
§ In Java, strings are regular objects

§ In C, strings are just char arrays with a NUL (‘\0’) terminator
§ “a cat” =

§ A literal string (“a cat”)
– is automatically allocated memory space to contain it and the terminating \0
– has a value which is the address of the first character
– can’t be changed by the program (common bug!)

§ All other strings must have space allocated to them by the program

132

a c a t \0

Spring 2021 CSC322: Computer Organization Lab

132

67

Strings
char *makeBig(char *s) {

s[0] = toupper(s[0]);

return s;

}

makeBig(“a cat”);

133Spring 2021 CSC322: Computer Organization Lab

133

Strings
§ We normally refer to a string via a pointer to its first character:
char *str = “my string”;
char *s;
s = &str[0]; s = str;

§ C functions only know string ending by \0:
char *str = “my string”;
...
int i;
for (i = 0; str[i] != ‘\0’; i++) putchar(str[i]);
char *s;
for (s = str; *s; s++) putchar(*s);

134Spring 2021 CSC322: Computer Organization Lab

134

68

Strings
§ Can treat like arrays:
char c;

char line[100];

for (i = 0; i < 100 && line[c]; i++) {

if (isalpha(line[c]) ...

}

135Spring 2021 CSC322: Computer Organization Lab

135

Copying strings
§ Copying content vs. copying pointer to content

§ s = t copies pointer – s and t now refer to the same memory location
§ strcpy(s, t); copies content of t to s
char mybuffer[100];
...
mybuffer = “a cat”;

§ is incorrect (but appears to work!)

§ Use strcpy(mybuffer, “a cat”) instead

136Spring 2021 CSC322: Computer Organization Lab

136

69

Example string manipulation
#include <stdio.h>

#include <string.h>

int main(void) {

char line[100];

char *family, *given, *gap;

printf(“Enter your name:”); fgets(line,100,stdin);

given = line;

for (gap = line; *gap; gap++)

if (isspace(*gap)) break;

*gap = ‘\0’;

family = gap+1;

printf(“Your name: %s, %s\n”, family, given);

return 0;

}

137Spring 2021 CSC322: Computer Organization Lab

137

string.h library
§ Assumptions:
– #include <string.h>
– strings are NUL-terminated
– all target arrays are large enough

§ Operations:
– char *strcpy(char *dest, char *source)
o copies chars from source array into dest array up to NUL
– char *strncpy(char *dest, char *source, int num)
o copies chars; stops after num chars if no NUL before that; appends NUL

138Spring 2021 CSC322: Computer Organization Lab

138

70

string.h library
§ int strlen(const char *source)
– returns number of chars, excluding NUL

§ char *strchr(const char *source, const char ch)
– returns pointer to first occurrence of ch in source; NUL if none

§ char *strstr(const char *source, const char *search)
– return pointer to first occurrence of search in source

139Spring 2021 CSC322: Computer Organization Lab

139

Formatted strings
§ String parsing and formatting (binary from/to text)
§ int sscanf(char *string, char *format, ...)
– parse the contents of string according to format
– placed the parsed items into 3rd, 4th, 5th, ... argument
– return the number of successful conversions

§ int sprintf(char *buffer, char *format, ...)
– produce a string formatted according to format
– place this string into the buffer
– the 3rd, 4th, 5th, ... arguments are formatted
– return number of successful conversions

140Spring 2021 CSC322: Computer Organization Lab

140

71

Formatted strings
§ The format strings for sscanf and sprintf contain
– plain text (matched on input or inserted into the output)
– formatting codes (which must match the arguments)

§ The sprintf format string gives template for result string

§ The sscanf format string describes what input should look like

141Spring 2021 CSC322: Computer Organization Lab

141

Formatted strings
§ Formatting codes for sscanf

142

Code meaning variable
%c matches a single character char

%d matches an integer in decimal int

%f matches a real number (ddd.dd) float

%s matches a string up to white space char *

%[^c] matches string up to next c char char *

Spring 2021 CSC322: Computer Organization Lab

142

72

Formatted strings
§ Formatting codes for sprintf

§ Values normally right-justified; use negative field width to get left-justified

143

Code meaning variable
%nc char in field of n spaces char

%nd integer in field of n spaces int, long

%n.mf real number in width n, m decimals float, dou ble

%n.mg real number in width n, m digits of
precision

float, double

%n.ms first m chars from string in width n char *

Spring 2021 CSC322: Computer Organization Lab

143

Formatted strings - examples
char *msg = “Hello there”;

char *nums = “1 3 5 7 9”;

char s[10], t[10];

int a, b, c, n;

n = sscanf(msg, “%s %s”, s, t);

n = printf(“%10s %-10s”, t, s);

n = sscanf(nums, “%d %d %d”, &a, &b, &c);

printf(“%d flower%s”, n, n > 1 ? “s” : “ “);

printf(“a = %d, answer = %d\n”, a, b+c);

144Spring 2021 CSC322: Computer Organization Lab

144

73

The stdio library
§ Access stdio functions by
– using #include <stdio.h> for prototypes
– compiler links it automatically

§ defines FILE * type and functions of that type
§ data objects of type FILE *
– can be connected to file system files for reading and writing
– represent a buffered stream of chars (bytes) to be written or read

§ always defines stdin, stdout, stderr

145Spring 2021 CSC322: Computer Organization Lab

145

The stdio library: fopen(), fclose()
§ Opening and closing FILE * streams:
FILE *fopen(const char *path, const char *mode)

– open the file called path in the appropriate mode
– modes: “r” (read), “w” (write), “a” (append), “r+” (read & write)
– returns a new FILE * if successful, NULL otherwise
int fclose(FILE *stream)

– close the stream FILE *
– return 0 if successful, EOF if not

146Spring 2021 CSC322: Computer Organization Lab

146

74

stdio – character I/O
int getchar()
– read the next character from stdin; returns EOF if none

int fgetc(FILE *in)
– read the next character from FILE in; returns EOF if none

int putchar(int c)
–write the character c onto stdout; returns c or EOF

int fputc(int c, FILE *out)
–write the character c onto out; returns c or EOF

147Spring 2021 CSC322: Computer Organization Lab

147

stdio – line I/O
char *fgets(char *buf, int size, FILE *in)

– read the next line from in into buffer buf
– halts at ‘\n’ or after size-1 characters have been read
– the ‘\n’ is read, but not included in buf
– returns pointer to strbuf if ok, NULL otherwise
– do not use gets(char *) – buffer overflow

int fputs(const char *str, FILE *out)

–writes the string str to out, stopping at ‘\0’
– returns number of characters written or EOF

148Spring 2021 CSC322: Computer Organization Lab

148

75

stdio – formatted I/O
int fscanf(FILE *in, const char *format, ...)

– read text from stream according to format

int fprintf(FILE *out, const char *format, ...)
– write the string to output file, according to format

int printf(const char *format, ...)
– equivalent to fprintf(stdout, format, ...)

§ Warning:
– do not use fscanf(...); use fgets(str, ...); sscanf(str, ...);

149Spring 2021 CSC322: Computer Organization Lab

149

Before you go….
§ Always initialize anything before using it (especially pointers)

§ Don’t use pointers after freeing them
§ Don’t return a function’s local variables by reference

§ No exceptions – so check for errors everywhere
–memory allocation
– system calls
–Murphy’s law, C version: anything that can’t fail, will fail

§ An array is also a pointer, but its value is immutable.

150Spring 2021 CSC322: Computer Organization Lab

150

