
CSC 320: Computer Organization
Lecture 1: Course Introduction

Spring 2018

Instructor:
Haidar M. Harmanani

11/22/18 Lecture #1

Agenda

• Thinking about Machine Structures

• Great Ideas in Computer Architecture

• What you need to know about this class

21/22/18 Lecture #1

Agenda

• Thinking about Machine Structures

• Great Ideas in Computer Architecture

• What you need to know about this class

31/22/18 Lecture #1

The Computer Revolution
• Progress in computer technology
• Makes novel applications feasible
– Computers in automobiles
– Cell phones
– Human genome project
– World Wide Web
– Search Engines

• Computers are pervasive
1/22/18 Lecture #1 4

Classes of Computers
• Personal computers
– General purpose, variety of software
– Subject to cost/performance tradeoff

• Server computers
– Network based
– High capacity, performance, reliability
– Range from small servers to building sized

1/22/18 Lecture #1 5

Classes of Computers
• Supercomputers
– High-end scientific and engineering calculations
– Highest capability but represent a small fraction of

the overall computer market

• Embedded computers
– Hidden as components of systems
– Stringent power/performance/cost constraints

1/22/18 Lecture #1 6

CSC 320 is NOT about hardware
or software …

• It is about the hardware-software interface
– What does the programmer need to know to achieve the

highest possible performance?

• Languages like C are closer to the underlying hardware,
unlike languages like Scheme, Python, Java!
– We can talk about hardware features in higher-level terms

– Allows programmer to explicitly harness underlying
hardware parallelism for high performance

71/22/18 Lecture #1

Your Grand Father’s CSC 320

1/22/18 8Lecture #1

Your Grand Father’s CSC 320?

91/22/18 Lecture #1

My CSC 320 • 6 MHz CPU
Clock

• 512 KB
RAM

• 20 MB
Hard disk

• 1.44 MB
3.5 inch
floppy drive

• 640×480
VGA

1/22/18 Lecture #1 10

The PostPC Era

1/22/18 Lecture #1 11

12

Personal
Mobile
Devices1/22/18 Lecture #1

131/22/18 Lecture #1

141/22/18 Lecture #1

Course Information
• Course Web:

– http://harmanani.github.io/csc320.html
– http://vlsi.byblos.lau.edu.lb/csc320.html

• Instructor:
– Haidar M. Harmanani, 810 Block A

• Textbooks:
– Patterson & Hennessey, Computer Organization and Design, ARM

Edition.
– Kernighan & Ritchie, The C Programming Language, 2nd Edition

(Lab Mostly)
• Check piazza for announcement, discussion, and clarification

– Do not send individual emails!
1/22/18 15Lecture #1

Course Grading
• Midterm (30%)
• Final (40%)
• Homework and Programming Assignments (15%)

1. Paper and Pencil Textbook Problems (2-4)
2. ARM Programming Assignments (1-2)
3. Paper and Pencil Computer Design (1-2)

• Quizzes (15%)
– 5-7
– Drop the lowest

161/22/18 Lecture #1

What You Will Learn
• How programs are translated into the machine

language
– And how the hardware executes them

• The hardware/software interface
• What determines program performance
– And how it can be improved

• How hardware designers improve performance
• What is parallel processing

1/22/18 Lecture #1 17

Peer Instruction
• Increase real-time learning in lecture,

test understanding of concepts vs. details
• As complete a “segment” ask multiple choice

question
– 1-2 minutes to decide yourself
– 2 minutes in pairs/triples to reach consensus.
– 2 minute discussion of answers, questions,

clarifications

• We will be using a free online app

181/22/18 Lecture #1

Late Policy …
• Assignments due at start of the class

• Projects are due by 5 pm

• Every day your project or homework is late,
it’s 15 points per day.
– No credit if more than 3 days late

191/22/18 Lecture #1

Policy on Assignments and
Independent Work

• With the exception of laboratories and assignments (projects and HW) that explicitly permit
you to work in groups, all homework and projects are to be YOUR work and your work
ALONE.

• It is NOT acceptable to copy solutions from other students.
• It is NOT acceptable to copy (or start your) solutions from the Web.
• PARTNER TEAMS MAY NOT WORK WITH OTHER PARTNER TEAMS
• You are encouraged to help teach other to debug. Beyond that, we don’t want you sharing

approaches or ideas or code or whiteboarding with other students, since sometimes the point
of the assignment is the “algorithm” and if you share that, they won’t learn what we want them
to learn). We expect that what you hand in is yours.

• It is NOT acceptable to leave your code anywhere where an unscrupulous student could find
and steal it (e.g., public githubs, walking away while leaving yourself logged on, leaving
printouts lying around,etc)

• The first offense is a zero on the assignment and an F in the course the second time
• Both Giver and Receiver are equally culpable and suffer equal penalties

201/22/18 Lecture #1

Computers/Programming
• All assignments and handouts will be communicated via piazza

– Make sure you enable your account

• Use piazza for questions and inquiries
– No questions will be answered via email

• All assignments must be submitted via github
– git is a distributed version control system
– Version control systems are better tools for sharing code than emailing

files, using flash drives, or Dropbox
– Make sure you get a private repo

• Apply for a free account: https://education.github.com/discount_requests/new

1/22/18 21Lecture #1

The PostPC Era
• Personal Mobile Device (PMD)

– Battery operated
– Connects to the Internet
– Hundreds of dollars
– Smart phones, tablets, electronic glasses

• Cloud computing
– Warehouse Scale Computers (WSC)
– Software as a Service (SaaS)
– Portion of software run on a PMD and a portion run in the Cloud
– Amazon and Google

1/22/18 Lecture #1 22

Yoda says…
�Always in motion, the future is…�

231/22/18 Lecture #1

Agenda

• Thinking about Machine Structures

• Great Ideas in Computer Architecture

• What you need to know about this class

241/22/18 Lecture #1

6 Great Ideas in Computer Architecture
1. Abstraction (Layers of

Representation/Interpretation)
2. Moore’s Law
3. Principle of Locality/Memory Hierarchy
4. Parallelism
5. Performance Measurement & Improvement
6. Dependability via Redundancy

251/22/18 Lecture #1

Below Your Program
• Application software

– Written in high-level language
• System software

– Compiler: translates HLL code to machine
code

– Operating System: service code
• Handling input/output
• Managing memory and storage
• Scheduling tasks & sharing resources

• Hardware
– Processor, memory, I/O controllers

1/22/18 Lecture #1 26

Levels of Program Code
• High-level language
– Level of abstraction closer to problem

domain
– Provides for productivity and portability

• Assembly language
– Textual representation of instructions

• Hardware representation
– Binary digits (bits)
– Encoded instructions and data

1/22/18 Lecture #1 27

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

281/22/18 Lecture #1

29

Predicts:
2X Transistors / chip

every 2 years

Gordon Moore
Intel Cofounder
B.S. Cal 1950!

#2: Moore’s
Law

1/22/18 Lecture #1

30

Great Idea #3: Principle of Locality/
Memory Hierarchy

1/22/18 Lecture #1

Great Idea #4: Parallelism

311/22/18 Lecture #1

32

Caveat!
Amdahl’s
Law

Gene Amdahl
Computer Pioneer

1/22/18 Lecture #1

Great Idea #5: Performance
Measurement and Improvement

• Matching application to underlying hardware to exploit:
– Locality
– Parallelism
– Special hardware features, like specialized instructions (e.g.,

matrix manipulation)
• Latency

– How long to set the problem up
– How much faster does it execute once it gets going
– It is all about time to finish

331/22/18 Lecture #1

Understanding Performance
• Algorithm

– Determines number of operations executed
• Programming language, compiler, architecture

– Determine number of machine instructions executed per
operation

• Processor and memory system
– Determine how fast instructions are executed

• I/O system (including OS)
– Determines how fast I/O operations are executed

1/22/18 Lecture #1 34

Coping with Failures
• Consider a Warehouse-Scale Computer (WSC)
– 4 disks/server, 50,000 servers
– Failure rate of disks: 2% to 10% / year

• Assume 4% annual failure rate
– On average, how often does a disk fail?

a) 1 / month
b) 1 / week
c) 1 / day
d) 1 / hour

351/22/18 Lecture #1

Coping with Failures
• Consider a Warehouse-Scale Computer (WSC)
– 4 disks/server, 50,000 servers
– Failure rate of disks: 2% to 10% / year

• Assume 4% annual failure rate
– On average, how often does a disk fail?

a) 1 / month
b) 1 / week
c) 1 / day
d) 1 / hour

36

50,000 x 4 = 200,000 disks
200,000 x 4% = 8000 disks fail

365 days x 24 hours = 8760 hours

1/22/18 Lecture #1

Great Idea #6:
Dependability via Redundancy

• Redundancy so that a failing piece doesn’t
make the whole system fail

37

1+1=2 1+1=2 1+1=1

1+1=2 2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy
1/22/18 Lecture #1

• Applies to everything from datacenters to
storage to memory to instructors
– Redundant datacenters so that can lose 1 datacenter

but Internet service stays online

– Redundant disks so that can lose 1 disk but not lose
data (Redundant Arrays of Independent Disks/RAID)

– Redundant memory bits of so that can lose 1 bit but
no data (Error Correcting Code/ECC Memory)

Great Idea #6:
Dependability via Redundancy

381/22/18 Lecture #1

Agenda

• Thinking about Machine Structures

• Great Ideas in Computer Architecture

• What you need to know about this class

391/22/18 Lecture #1

Components of a Computer
• Same components for all kinds of computer
– Desktop, server, embedded

• Input/output includes
– User-interface devices

• Display, keyboard, mouse
– Storage devices

• Hard disk, CD/DVD, flash
– Network adapters

• For communicating with other computers

1/22/18 Lecture #1 40

Touchscreen
• PostPC device

• Supersedes keyboard and mouse

• Resistive and Capacitive types

–Most tablets, smart phones use capacitive

– Capacitive allows multiple touches
simultaneously

1/22/18 Lecture #1 41

Opening the Box
Capacitive multitouch LCD screen

3.8 V, 25 Watt-hour battery

Computer board

1/22/18 Lecture #1 42

Inside the Processor (CPU)
• Datapath: performs operations on data

• Control: sequences datapath, memory, ...

• Cache memory

– Small fast SRAM memory for immediate access
to data

1/22/18 Lecture #1 43

Inside the Processor: Apple A5

1/22/18 Lecture #1 44

Inside the Processor: Apple A7 and A8

1/22/18 Lecture #1 45

Apple A7
• Dual Core
• Max CPU Clock: 1.3 GHz
• 64-bit Design
• 28 nm process
• 1 Billion Transistors
• Area = 102 mm2

• Power consumption
– 1100 mA

• Per Core
– 64 KB L1 cache for data and 64 KB for

instructions
– 1 MB L2 cache shared by both CPU cores
– 4 MB L3 cache that services the entire SoC

Apple A8
• Dual Core
• Max CPU Clock: 1.4 GHz
• 64-bit Design
• 20 nm process
• 2 Billion Transistors
• Area = 89 mm2

• Power consumption
– 550 mA

• Per Core
– 64 KB L1 cache for data and 64 KB for

instructions
– 1 MB L2 cache shared by both CPU cores
– 4 MB L3 cache that services the entire SoC

Inside the Processor

1/22/18 Lecture #1 46

Apple A9
• Quad Cores

– Two high-performance CPU cores and two
“high efficiency” cores that run at one fifth
the power

• Max CPU Clock: 1.85 GHz
• 64-bit Design
• 16 nm process
• 1 Billion Transistors
• Area = 104 mm2

• Per Core
– 64 KB L1 cache for data and 64 KB for

instructions
– 3 MB L2 cache shared by both CPU cores
– 4 MB L3 cache that services the entire SoC

Apple A10 Fusion
• Quad Cores

– Two high-performance CPU cores and two
“high efficiency” cores that run at one fifth
the power

• Max CPU Clock: 2.34 GHz
• 64-bit Design
• 16 nm process
• 3.3 Billion Transistors
• Area = 125 mm2

• Per Core
– 64 KB L1 cache for data and 64 KB for

instructions
– 3 MB L2 cache shared by both CPU cores
– 4 MB L3 cache that services the entire SoC

Inside the Processor

1/22/18 Lecture #1 47

Inside the Processor
• The Apple A8 has 25% more CPU

performance and 50% more graphics
performance while drawing only 50% of the
power compared to the Apple A7!

1/22/18 Lecture #1 48

Abstractions
• Abstraction helps us deal with complexity
– Hide lower-level detail

• Instruction set architecture (ISA)
– The hardware/software interface

• Application binary interface
– The ISA plus system software interface

• Implementation
– The details underlying and interface

1/22/18 Lecture #1 49

A Safe Place for Data
• Volatile main memory

– Loses instructions and data when power off

• Non-volatile secondary memory
– Magnetic disk
– Flash memory
– Optical disk (CDROM, DVD)

Lecture #1

Networks
• Communication, resource

sharing, nonlocal access
• Local area network (LAN):

Ethernet
• Wide area network (WAN): the

Internet
• Wireless network: WiFi,

Bluetooth

1/22/18 Lecture #1 51

Technology Trends
• Electronics technology continues

to evolve
– Increased capacity and

performance
– Reduced cost

Year Technology Relative performance/cost
1951 Vacuum tube 1
1965 Transistor 35
1975 Integrated circuit (IC) 900
1995 Very large scale IC (VLSI) 2,400,000
2013 Ultra large scale IC 250,000,000,000

DRAM capacity

1/22/18 Lecture #1 52

Semiconductor Technology
• Silicon: semiconductor

• Add materials to transform properties:

– Conductors

– Insulators

– Switch

1/22/18 Lecture #1 53

Manufacturing ICs
• Yield: proportion of working dies per wafer

1/22/18 Lecture #1 54

Intel Core i7 Wafer (Coffee Lake-S)
• 478 dies per wafer,

14nm technology

• Die area: 126 mm²
• 4-6 Cores, 8-12

threads

• $3.30 per square
millimeter

1/22/18 55Lecture #1

Integrated Circuit Cost
• Nonlinear relation to area and defect rate

– Wafer cost and area are fixed
– Defect rate determined by manufacturing process
– Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1
1Yield

area Diearea Wafer waferper Dies

Yield waferper Dies
 waferper Costdie per Cost

´+
=

»

´
=

1/22/18 Lecture #1 56

Defining Performance
• Which airplane has the best performance?

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

1/22/18 Lecture #1 57

Response Time and Throughput
• Response time

– How long it takes to do a task
• Throughput

– Total work done per unit time
• e.g., tasks/transactions/… per hour

• How are response time and throughput affected by
– Replacing the processor with a faster version?
– Adding more processors?

• We’ll focus on response time for now…

1/22/18 Lecture #1 58

Relative Performance
• Define Performance = 1/Execution Time

• �X is n time faster than Y�

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n Example: time taken to run a program

n 10s on A, 15s on B

n Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

n So A is 1.5 times faster than B

1/22/18 Lecture #1 59

Measuring Execution Time
• Elapsed time
– Total response time, including all aspects

• Processing, I/O, OS overhead, idle time
– Determines system performance

• CPU time
– Time spent processing a given job

• Discounts I/O time, other jobs� shares
– Comprises user CPU time and system CPU time
– Different programs are affected differently by CPU and

system performance

1/22/18 Lecture #1 60

CPU Clocking
• Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n Clock period = 1/frequency = duration of a clock cycle

n e.g., 250ps = 0.25ns = 250�10–12s
n Clock rate or frequency: cycles per second

n e.g., 4.0GHz = 4000MHz = 4.0�109Hz

1/22/18 Lecture #1 61

CPU Clocking
• If a CPU operates:

– At 100 Hz, its "clock cycle" is 0.01 second = 10 ms
– At 100 MHz, its clock cycle is 0.000 000 01 second = 10 ns.

• Recall
– millisecond (ms): 0.001 second
– microsecond (us): 0.000 001 second
– nanosecond (ns): 0.000 000 001 second
– picoseconds (ps): 0.000 000 000 001 second
– 1 kilohertz (kHz) = 1 000 cycles / second
– 1 megahertz (MHz) = 1 000 000 cycles / second
– 1 gigahertz (GHz) = 1 000 000 000 cycles / second

1/22/18 Lecture #1 62

CPU Time
• Performance improved by
– Reducing number of clock cycles
– Increasing clock rate
– Hardware designer must often trade off clock rate

against cycle count

Rate Clock
Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

´=

1/22/18 Lecture #1 63

CPU Time Example
• Computer A: 2GHz clock, 10s CPU time
• Designing Computer B

– Aim for 6s CPU time
– Can do faster clock, but causes 1.2 × clock cycles

• How fast must Computer B clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B

=
´

=
´´

=

´=´=

´=

´
==

1/22/18 Lecture #1 64

Instruction Count and CPI
• Instruction Count for a program

– Determined by program, ISA and compiler

• Average cycles per instruction
– Determined by CPU hardware
– If different instructions have different CPI

• Average CPI affected by instruction mix

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

´
=

´´=

´=

1/22/18 Lecture #1 65

CPI Example
• Computer A: Cycle Time = 250ps, CPI = 2.0
• Computer B: Cycle Time = 500ps, CPI = 1.2
• Same ISA
• Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
´
´

=

´=´´=

´´=

´=´´=

´´=

A is faster…

…by this
much

1/22/18 Lecture #1 66

CPI in More Detail
• If different instruction classes take

different numbers of cycles

å
=

´=
n

1i
ii)Count nInstructio(CPICycles Clock

n Weighted average CPI

å
=

÷
ø
ö

ç
è
æ ´==

n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency

1/22/18 Lecture #1 67

CPI Example
• Alternative compiled code sequences using instructions in classes A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1

n Sequence 1: IC = 5
n Clock Cycles

= 2�1 + 1�2 + 2�3
= 10

n Avg. CPI = 10/5 = 2.0

n Sequence 2: IC = 6
n Clock Cycles

= 4�1 + 1�2 + 1�3
= 9

n Avg. CPI = 9/6 = 1.5
1/22/18 Lecture #1 68

Performance Summary

• Performance depends on
– Algorithm: affects IC, possibly CPI

– Programming language: affects IC, CPI

– Compiler: affects IC, CPI

– Instruction set architecture: affects IC, CPI, Tc

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=

1/22/18 Lecture #1 69

Power Trends

• In CMOS IC technology
FrequencyVoltageload CapacitivePower 2 ´´=

�1000�30 5V → 1V

1/22/18 Lecture #1 70

Reducing Power
• Suppose a new CPU has
– 85% of capacitive load of old CPU
– 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
´´

´´´´´
=

n The power wall
n We can’t reduce voltage further
n We can’t remove more heat

n How else can we improve performance?
1/22/18 Lecture #1 71

Uniprocessor Performance

Constrained by power, instruction-level parallelism,
memory latency

The Sea Change: The
Switch to Multiprocessors

1/22/18 Lecture #1 72

Multiprocessors
• Multicore microprocessors

– More than one processor per chip
• Requires explicitly parallel programming

– Compare with instruction level parallelism
• Hardware executes multiple instructions at once
• Hidden from the programmer

– Hard to do
• Programming for performance
• Load balancing
• Optimizing communication and synchronization

1/22/18 Lecture #1 73

SPEC CPU Benchmark
• Programs used to measure performance

– Supposedly typical of actual workload
• Standard Performance Evaluation Corp (SPEC)

– Develops benchmarks for CPU, I/O, Web, …
• SPEC CPU2006

– Elapsed time to execute a selection of programs
• Negligible I/O, so focuses on CPU performance

– Normalize relative to reference machine
– Summarize as geometric mean of performance ratios

• CINT2006 (integer) and CFP2006 (floating-point)

n
n

1i
iratio time ExecutionÕ

=
1/22/18 Lecture #1 74

CINT2006 for Intel Core i7 920

1/22/18 Lecture #1 75

SPEC Power Benchmark
• Power consumption of server at different

workload levels

– Performance: ssj_ops/sec

– Power: Watts (Joules/sec)

÷
ø

ö
ç
è

æ
÷
ø

ö
ç
è

æ
= åå

==

10

0i
i

10

0i
i powerssj_ops Wattper ssj_ops Overall

1/22/18 Lecture #1 76

SPECpower_ssj2008 for Xeon X5650

1/22/18 Lecture #1 77

Fallacies and Pitfalls

1/22/18 78Lecture #1

Pitfall: Amdahl’s Law
• Improving an aspect of a computer and expecting a

proportional improvement in overall performance

208020 +=
n

n Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

n Example: multiply accounts for 80s/100s
n How much improvement in multiply performance to

get 5× overall?

n Corollary: make the common case fast

1/22/18 Lecture #1 79

Fallacy: Low Power at Idle
• Look back at i7 power benchmark

– At 100% load: 258W
– At 50% load: 170W (66%)
– At 10% load: 121W (47%)

• Google data center
– Mostly operates at 10% – 50% load
– At 100% load less than 1% of the time

• Consider designing processors to make power
proportional to load

1/22/18 Lecture #1 80

Pitfall: MIPS as a Performance
Metric

• MIPS: Millions of Instructions Per Second
– Doesn’t account for

• Differences in ISAs between computers
• Differences in complexity between instructions

6
6

6

10CPI
rate Clock

10
rate Clock

CPIcount nInstructio
count nInstructio
10time Execution

count nInstructioMIPS

´
=

´
´

=

´
=

n CPI varies between programs on a given CPU

1/22/18 Lecture #1 81

Concluding Remarks
• Cost/performance is improving

– Due to underlying technology development
• Hierarchical layers of abstraction

– In both hardware and software
• Instruction set architecture

– The hardware/software interface
• Execution time: the best performance measure
• Power is a limiting factor

– Use parallelism to improve performance

1/22/18 Lecture #1 82

